View on GitHub

Online CMT seminars

Web会議ツールZoomを利用したオンライン物性理論セミナーです。

登録する際のメールアドレスは、できるだけ大学もしくは研究機関のものをご使用ください。

世話人: 高三和晃(UCバークレー)、下川統久朗(OIST)、永井佑紀(原子力機構)、品岡寛(埼玉大)(順不同)

第58回

日時: 2021年11月16日(火)11:00-
発表者: 田財 里奈(名古屋大)
発表題目: TBA

登録フォーム

第57回

日時: 2021年11月2日(火)11:00-
発表者: 近藤 寛記(東大)
発表題目: TBA

登録フォーム

第56回

日時: 2021年10月19日(火)11:00-
発表者: 高橋 雅大(阪大)
発表題目: キタエフ磁性体におけるトポロジカルネマティック相転移と点欠陥に束縛されたマヨラナゼロモードの確立(仮)

登録フォーム

第55回

日時: 2021年10月5日(火)11:00-
発表者: 伏屋 雄紀(電通大基盤理工)
発表題目: ナノスケールのチューリング・パターン:単層ビスマスの形態形成

登録フォーム

生物における形態形成の過程では,無秩序から秩序が生まれる.チューリングは,異なる拡散速度を持つ活性因子と抑制因子間の相互作用により,形態形成の過程が簡単な連立微分方程式(反応拡散方程式)で記述できることを発見した[1].チューリングの理論は,生物学や化学など,幅広い分野で極めて大きな影響を及ぼした.生物パターンの典型的な長さスケールはcmからmmで,純粋な化学系ではsub-mm程度である.しかし,μm以下のチューリング・パターンは自然界においては極めて稀であり,ほとんど調べられてこなかった.また,チューリング・パターンが生成される舞台はソフトマターに限られていた.

本研究では,NbSe2上に成長したビスマス単原子膜の形態形成を理論的に調べた.我々は,三種の原子間相互作用からなる模型を構築し,その時間発展方程式を解くことで,ビスマス原子位置の安定解を求めた.その結果,原子5個分(約2nm)の周期を持つチューリング・パターンが生成されることが分かった.計算によって得られたストライプ構造,ドメイン壁およびそれらのY字型接合は,何れも実験で観測されたパターンと非常によい一致を示す[2,3].我々の結果は,“ハード”マターにおいて原子スケールのチューリング・パターンが得られた最初の実例となる.

[1] A. Turing, Phil. Trans. R. Soc. Lond. B, 237, 37 (1952).
[2] A. Fang, et al., Sci. Adv., 4, eaaq0330 (2018).
[3] Y. Fuseya, H. Katsuno, K. Behnia, A. Kapitulnik, Nature Physics, (2021), https://doi.org/10.1038/s41567-021-01288-y

第54回

日時: 2021年9月28日(火)11:00-
発表者: 秦 徳郎(東工大)
発表題目: 量子液体における三体相関の実験的検出

登録フォーム

量子ドットにおける近藤効果は、量子液体における平衡状態から非平衡状態までの連続的な振る舞いを扱う最適な舞台である[1]。その線形応答領域は、平衡状態における電子間の二体相関に基づく揺動散逸関係で記述される。この「二体相関」は帯磁率に相当する量であり、これまでの研究によって実験的にも理論的にも確立されている。しかし、非線形非平衡領域を扱うには、「三体相関」といった高次の相関の役割を明らかにする必要がある。

本研究では、ユニタリ極限に近い理想的な近藤効果を実現し、その非線形非平衡領域を解析することで三体相関を評価した[2]。磁場が印加されていない状態では三体相関はゼロで、磁場を印加すると三体相関が増大することがわかった。この結果は、近年発表された非平衡領域にある量子液体の理論(局所フェルミ液体論)[3]に定量的に合致した。本成果は、非平衡状態における量子液体において、実験的に初めて三体相関を検出することに成功したものであり、他の非平衡現象を定量的に理解するためのよい試金石となる。

[1] D. Goldhaber-Gordon et al., Nature 391, 156–159 (1998). [2] T. Hata et al., Nat. Commun. 12, 3233 (2021). [3] A. Oguri and A. C. Hewson, Phys. Rev. Lett. 120, 126802 (2018).

第53回

日時: 2021年9月7日(火)11:00-
発表者: 吉川 尚孝(東大)
発表題目: 電荷密度波の振幅モード励起による絶縁体的状態

登録フォーム

光によって物質の電気伝導性や磁性などの性質を自在に制御する試みは兼ねてから盛んに研究されてきた。最近、テラヘルツ(THz)波や中赤外光などの光を用いることで、熱化を抑えながら特定のモードを励起することが可能となり、これによる低温相や隠れた秩序相への相転移現象が報告されている[1]。我々は秩序相を示す物質の秩序変数を光で直接操作することによる物性制御の実現を目的とし、テラヘルツ周波数帯に電荷密度波の秩序変数の振幅モードを示す2次元物質3R-Ta1+xSe2に着目して高強度テラヘルツ波を用いたポンププローブ分光を行った。高強度THz波を用いてこの物質の電荷密度波の振幅モードを二光子過程で駆動することに成功し、さらに振幅モード励起に伴って金属的な応答を示す平衡状態のCDW相から平衡状態にない絶縁体的な状態へ変化することを示した[2]。

[1] X. Li et al., Science 364, 1079 (2019). [2] N. Yoshikawa et al., Nat. Phys. (2021). (https://doi.org/10.1038/s41567-021-01267-3)

第52回

日時: 2021年8月24日(火)11:00-
発表者: 竹内 宏光 (大阪市立大理学部)
発表題目: 量子楕円渦:U(1)対称性が破れた超流動相における巻き数1の量子渦の自発的“分裂“

登録フォーム

自発的対称性の破れが起こる系でどのような形状の位相欠陥が生じるかという問題は その対称性の破れ方を位相幾何学で分類することで理解されてきた. このような位相欠陥に対する従来の認識を否定する物理現象が最近観測された[1]. U(1)対称性が自発的に破れた従来の超流体では量子渦と呼ばれる“糸状“の位相欠陥が実現し, その断面は台風の目の様に回転対称である. ところが,この実験系の超流動相では同様の対称性の破れが起こるにも関わらず, そこで観測された位相欠陥の形状はそれとは似ても似つかないものであった. 本講演ではこの奇妙な位相欠陥が量子楕円渦と呼ばれる回転対称性を破った渦状態として定量的に理解され, “糸状“ではなく“帯状“の渦として存在することを示す[2].

[1] Seji Kang, Sang Won Seo, Hiromitsu Takeuchi, and Yong-il Shin Observation of Wall-Vortex Composite Defects in a Spinor Bose-Einstein Condensate Phys. Rev. Lett. 122, 095301 (2019) [2] Hiromitsu Takeuchi Quantum Elliptic Vortex in a Nematic-Spin Bose-Einstein Condensate Phys. Rev. Lett. 126, 195302 (2021)

第51回

日時: 2021年8月3日(火)11:00-
発表者: 中村 真(中央大)
発表題目: ゲージ・重力対応を用いた非平衡相転移の解析と電流駆動型非平衡三重臨界点の発見

登録フォーム

ゲージ・重力対応とは、強く相互作用するゲージ粒子の理論を、高次元の曲がっ た時空における一般相対性理論の古典論に置き変える対応関係である。この対応 関係は微視的理論のレベルで成立しており、系のマクロな状態が平衡状態か非平 衡状態であるかは問わない。同時に、対応するゲージ理論を粗視化してマクロな 物理を表現する機構が重力理論側には備わっている。これらを総合すると、非平 衡状態に対応するバックグラウンドを重力理論側で適切に設定することで、非平 衡状態にあるゲージ粒子多体系のマクロな性質を、重力の古典論から読み取るこ とができるものと考えられる。講演者らは、ゲージ・重力対応のこのような性質 を利用し、定常電流の流れる非平衡定常状態において、ゲージ粒子多体系が示す 相転移を調べてきた。特に本研究では、カイラル対称性の自発的破れに対する定 常電流の影響を解析し、定常電流の存在により新奇な三重臨界点が現れる場合が あることを発見した[1]。本講演では、ゲージ・重力対応の概要を説明するとと もに、今回発見した三重臨界点の臨界指数など、詳細を報告する予定である。

[1] T. Imaizumi, M. Matsumoto and Shin Nakamura, ``Current Driven Tricritical Point in Large- Nc Gauge Theory’’ Phys. Rev. Lett. 124 (2020) 19, 191603, [arXiv:1911.06262 [hep-th]]

第50回

日時: 2021年7月20日(火)11:00-
発表者: 吉岡 信行(東大)
発表題目: ニューラルネットワークによる固体量子物性の第一原理計算

登録フォーム

画像認識や自動翻訳などの情報処理タスクにおいて、大きな威力を発揮しているニューラルネットワークは、非常に柔軟な表現能力を持つことが知られている。近年、その表現能力をうまく活用することで、量子多体系をはじめとした、複雑な相関を持つ状態のシミュレーションを効率的に行えることがわかってきた。これは、波動関数法による多体電子状態の第一原理計算のように、変分関数の表現能力に難点を抱えてきた数値手法を大幅に改善させる可能性を示唆している。

本講演では、ニューラルネットワークを用いて、固体系の電子状態を計算する手法を導入する。特に、変分モンテカルロ法を用いた基底状態計算および部分空間展開によるバンド計算を行う手法を議論する。密な原子構造・高い対称性に起因して電子相関が強まり、結合クラスター法などの従来手法が破綻するような領域においても、ニューラルネットワークにより電子状態を精密に表現できることを示す。本講演は論文[1]に基づく。

[1] N. Yoshioka, W. Mizukami, and F. Nori, Communications Physics 4, 106 (2021).

第49回

日時: 2021年7月13日(火)11:00-
発表者: 金杉翔太(京大)
発表題目: 多バンド系におけるアナポール超伝導の理論

登録フォーム

Cooper対が内部自由度を持つ非従来型超伝導は、U(1)ゲージ対称性だけでなく様々な対称性の破れを引き起こす。特に、量子系において重要な時間反転対称性・パリティ対称性を破る場合は活発に研究されている。例えば時間反転対称性を破るカイラル超伝導では、そのトポロジカルな性質が注目を集めている。空間反転対称性の破れた系では、パリティ混成した超伝導が精力的に研究されてきた。さらに最近では、空間反転対称性を保つ系でもパリティ混成超伝導の秩序化が議論されている。奇パリティ多極子秩序の揺らぎが超伝導を媒介する系では、偶パリティと奇パリティの対形成引力の拮抗が指摘されている[1]。近年発見されたスピン三重項超伝導体の候補物質UTe2では、結晶構造は空間反転対称性を保つにも関わらず、圧力下でパリティ混成した超伝導状態の安定化が提案されている[2]。上記のようなパリティの異なる超伝導不安定性が拮抗する系では、時間反転対称性を破るパリティ混成超伝導の安定化が示されているが[3]、その詳しい性質は明らかにされていない。

そこで本講演では、時間反転対称性を破るパリティ混成超伝導の性質を、新たに多バンド性を取り入れて解析した結果[4]を紹介する。まず、超伝導が時間反転対称性とパリティ対称性の両方を破ることに起因して、Bogoliubov準粒子のスペクトルに非対称性が現れることを明らかにする。この非対称性はバンド間ペアリングが担っており、多バンド性を考慮することで初めて見える現象である。さらに超伝導の対称性が極性を持つ場合には、Bogoliubovスペクトルの非対称性が有効的にアナポールモーメントを生じ、その方向に空間変調した超伝導(アナポール超伝導)が実現することを示す。最後に以上の結果をUTe2に適用し、結晶構造の局所的な空間反転対称性の破れに起因してアナポール超伝導が実現することを議論する。

[1] V. Kozii and L. Fu, Phys. Rev. Lett. 115, 207002 (2015). [2] J. Ishizuka and Y. Yanase, Phys. Rev. B 103, 094504 (2021). [3] Y. Wang and L. Fu, Phys. Rev. Lett. 119, 187003 (2017). [4] S. Kanasugi and Y. Yanase, submitted.

第48回

日時: 2021年6月29日(火)11:00-
発表者: 水上 雄太(東大)
発表題目: キタエフ量子スピン液体におけるマヨラナ励起の磁場角度依存性

キタエフ模型は、蜂の巣格子上のS=1/2スピンがボンド方向に依存するイジング相互作用を持つ量子スピン模型である[1]。その相互作用に由来したフラストレーションにより、キタエフ模型の基底状態としては量子スピン液体が厳密解として得られる。この量子スピン液体状態では、スピンが分数化して二種類のマヨラナフェルミオンによる低エネルギー励起が生ずることが理論的に知られている。近年、キタエフ模型が現実の物質で実現すると理論的に予測され[2]、強いスピン軌道相互作用を持つモット絶縁体において盛んに研究が行われている[3,4]。キタエフ量子スピン液体状態においては、系のトポロジカルな性質によりマヨラナフェルミオンによるカイラルエッジ流が生じ、半整数の熱量子ホール効果が期待されているが[4]、近年それがキタエフ物質α-RuCl3において観測されている[5]。一方、そのバルク状態においては、磁場中ではマヨラナフェルミオンの励起スペクトルはギャップΔを持ち、磁場𝐻=(ℎ𝑥,ℎ𝑦,ℎ𝑧)に対してΔ∝|ℎ𝑥ℎ𝑦ℎ𝑧|の形の強い磁場方向依存性を持つことが理論的に予言される。

本講演では、我々が行っているα-RuCl3単結晶試料に対する磁場角度回転比熱測定を紹介する。蜂の巣格子面内において磁場角度を回転させた際の比熱は顕著な六回振動を示す。これは、系の励起ギャップの磁場角度依存性に六回振動が存在していることに起因する。比熱から得られる励起ギャップの磁場角度依存性と磁場強度依存性は、キタエフ模型で予言されるものと非常に良く一致しており、マヨラナ励起のエッジ流に対するバルク状態を観測していると考えられる[6]。

[1] A. Kitaev, Ann. Phys. 321, 2 (2006). [2] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009). [3] H. Takagi et al., Nat. Rev. Phys. 1, 264 (2019). [4] Y. Motome, and J. Nasu, J. Phys. Soc. Jpn. 89, 012002 (2020), 第47回講演 [5] Y. Kasahara et al., Nature 559, 227 (2018). [6] O. Tanaka, Y. Mizukami et al., arXiv:2007.06757 (2020).

登録フォーム

第47回

日時: 2021年6月22日(火)11:00-
発表者: 那須 譲治(横浜国立大)
発表題目: キタエフ量子スピン系の熱輸送特性とその磁場角度依存性

登録フォーム

キタエフ量子スピン模型は、極低温まで磁気秩序を示さない量子スピン液体状態を基底状態に持つ可解な模型として注目を集めている。さらに、スピン軌道相互作用の強い強相関電子系において、その模型の実現可能性が指摘されたことで、候補物質の様々な物理量に対する実験が行われている。キタエフ量子スピン液体においては、量子スピンの分数化により、創発マヨラナ準粒子が生じ、それが磁場によってトポロジカル状態になることで、マヨラナ端状態と非可換エニオンが実現すると考えられている。最近のキタエフ候補物質α-RuCl3における実験で、マヨラナ粒子の特徴である電子系の場合の半分の値に熱ホール係数が量子化する振る舞いが観測されており[1]、精力的な研究が行われている。

本講演では、まず、キタエフ量子スピン液体に対してこれまで我々が行ってきたマヨラナ描像でのモンテカルロ法を用いて計算した熱ホール係数の数値計算結果を紹介する[2]。さらに、ハイゼンベルク相互作用やΓ相互作用など付加的な相互作用の効果を議論するために、マグノン描像において熱ホール係数を評価し、その磁場角度依存性を計算した結果も紹介する[3]。当日は、それらの計算結果と実験結果[4]との関係も議論する予定である。

[1] Y. Kasahara et al., Nature 559, 227 (2018), M. Yamashita et. al., Phys. Rev. B 102, 220404(R) (2020), J.A.N. Bruin et. al., arXiv:2104.12184. [2] J. Nasu, J. Yoshitake, and Y. Motome, Phys. Rev. Lett. 119, 127204 (2017). [3] S. Koyama, J. Nasu, arXiv:2105.03113. [4] T. Yokoi et. al., arXiv:2001.01899, O. Tanaka et. al., arXiv:2007.06757, 第48回講演.

第46回

日時: 2021年6月8日(火)11:00-
発表者: 関 和弘(理研)
発表題目: 強相関格子模型に対する変分量子計算法の古典計算機シミュレーション

近年利用可能な量子計算機は、誤り訂正を行わないものであり、NISQ (noisy intermediate-scale quantum computers)と呼ばれている。NISQを用いた計算では、 量子ビット数や量子ゲート数のなるべく小さい回路を設計し、古典計算機で実行できる部分は古典計算機で行うことで、エラーの影響を抑えて意味ある結果を得ようという量子-古典ハイブリッ ド法が用いられる。NISQを量子多体系のハミルトニアンの固有値問題へ応用する枠組みのうち代表的なものとして、 variational quantum eigensolver (VQE)法が提案された[1]。VQE法は量子多体系の適当な変分波動関数を量子計算機で用意してその変分波動関数に対するハミルトニアン期待値を計算し、ハミルトニアン期待値を最小化するように古典計算機で変分パラメータを最適化する変分法である。また、元の固有値問題を、複数の波動関数で張られる適当な部分空間で一般化固有値問題として定式化して解くquantum subspace expansion (QSE)法も提案された[2]。QSE法は部分空間におけるハミルトニアン行列と重なり行列の要素を量子計算機で計算し、一般化固有値問題を古典計算機で解くという量子と古典の役割分担がある。VQE法やQSE法では、標的とする波動関数に応じて適切な変分波動関数や適切な部分空間を選ぶことが課題となっている。

本講演では、我々の最近の取り組みとして、VQE法の派生として射影演算子を作用させた変分波動関数を用いる方法[3]や、適当な波動関数とハミルトニアンから生成されるクリロフ部分空間で計算を行う方法[4]について紹介する。

[1] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, Nat. Commun. 5, 4213 (2014). [2] J. McClean, M. E. Kimchi-Schwartz, J. Carter, and W. A. de Jong, Phys. Rev. A 95, 042308 (2017). [3] K. Seki, T. Shirakawa, and S. Yunoki, Phys. Rev. A 101, 052340 (2020). [4] K. Seki and S. Yunoki, PRX Quantum 2, 010333 (2021).

登録フォーム

第45回

日時: 2021年5月25日(火)11:00- ※日程が変更になりました
発表者: 北折 暁(東大)
発表題目: 創発インダクター:材料開拓とこれからの課題

登録フォーム

磁気スキルミオンを始めとした非共面磁気構造においては、仮想的な磁場である創発磁場が伝導電子に作用する。創発磁場はこれに由来するトポロジカルホール効果を通じて、これまで多数の物質においてその静的な側面が実験的に観察されてきた。近年では創発電磁場の動的な側面に注目した研究も開拓されつつあり、その一環として提唱されたのが創発インダクター[1]である。創発インダクターはらせん型の磁気構造を電流駆動した際に生じる創発電場を検出・利用した素子で、素子の微細化が容易であることから応用面にも期待できる。既に本現象はGd3Ru4Al12において実証実験が行われている[2]が、この物質は転移温度が20K以下と低いことが問題であった。

本講演ではYMn6Sn6を用いた室温における創発インダクタンスの観測[3]を解説する。この実験結果は単に転移温度が上がっただけでなく、予期しなかった複数の特徴や示唆を含んでおり、その起源や特性に関しては理論的解明が待たれる状況である。さらに講演の最後には今後残された課題を列挙していき、本研究領域の発展を願って布教を行う。

[1] N. Nagaosa, Emergent inductor by spiral magnets. Jpn. J. Appl. Phys. 58, 12090 (2019). [2] T. Yokouchi et al. Emergent electromagnetic induction in a helical-spin magnet. Nature 586, 232-236 (2020). [3] A. Kitaori et al. Emergent electromagnetic induction beyond room temperature. arXiv:2103.02814

第44回

日時: 2021年4月20日(火)11:00- 注:曜日が4月から変更になります
発表者: 星野 晋太郎(埼玉大)
発表題目: ボゴリウボフ準粒子に対する相互作用の効果

登録フォーム

フェルミ面を持つ金属は、電子間相互作用によって多くの興味深い現象を引き起こす。その代表例である超伝導状態では、フェルミ面近傍の電子状態が再構成され、常伝導状態よりも低いエネルギーをもつ状態が実現する。通常、状態密度はフェルミ準位上でゼロになるためフェルミ面は消失している。ところが、ある種の超伝導体では、転移温度以下においてもフェルミ面が残るという可能性が指摘されている。このとき、フェルミ面を構成する粒子は電子そのものではなく、電子と正孔が量子力学的に重ねあわされたボゴリウボフ準粒子(bogolon) である点が特徴的であり、ボゴリウボフ・フェルミ面と呼ばれる。実験的にも、Fe(Se,S) の超伝導状態における比熱や熱伝導度の振る舞いから、ボゴリウボフ・フェルミ面が実現している可能性が報告されている。このような系は、通常の電子から成るフェルミ面とは定性的に異なる振る舞いを示すことが予想される。

本講演ではbogolon間の相互作用の効果が、通常の電子系とは異なる振る舞いを引き起こすことを紹介する。まず、bogolonに対する低エネルギー有効モデルを解析すると、奇周波数クーパー対という異時間でのみペアを組む特異な量子状態が形成されることがわかる[1]。また、相互作用はフェルミ面を不安定化させる効果もある。その一つの帰結が自発的対称性の破れを伴う偶周波数(同時刻)boglonクーパー対の形成である[2]。講演では、これらの性質を元の電子描像から調べた結果についても議論する。

[1] T. Miki, S.-T. Tamura, S. Iimura, and S. Hoshino, arXiv:2103.02251 (2021).
[2] S.-T. Tamura, S. Iimura, and S. Hoshino, Phys. Rev. B 102, 024505 (2020).

第43回

日時: 2021年4月6日(火)11:00- 注:曜日が4月から変更になります
発表者: 中川大也(東大)
発表題目: 散逸Hubbard模型における磁性と超流動ペアリング

登録フォーム

量子系が環境と相互作用することによる散逸の効果は、系の量子コヒーレンスを破壊する主要因であるため基礎・応用の両面において重要な問題である。このような量子開放系の問題は少数自由度の量子系においても重要であるが、近年冷却原子気体を用いることにより強相関・大自由度の量子多体系に対して実験的に制御可能な形で散逸の効果を調べることが可能になってきた。デコヒーレンスやダンピングといったネガティブな効果を想起させる散逸だが、このような散逸が多体物理と絡み合うことによって平衡状態では現れない秩序や転移が起こることが明らかとなってきた。本講演では、強相関多体系の代表例であるFermi-Hubbard模型において散逸が引き起こす秩序状態について議論する。まず、冷却原子気体における典型的な散逸である非弾性散乱の存在するHubbard模型において、スピン交換相互作用の効果が通常の平衡系とは逆転し、非平衡定常状態で強磁性が発現することを示す[1,2]。次に、散逸として光の自然放出による原子状態の遷移を考えると、非BCS型の非平衡ペアリング機構によりηペアリングという超流動状態が安定化することを示す[3]。これら2つの例は、斯波変換によって数学的に裏表の関係にある。最後に、[3]の研究過程で判明した、平衡・非平衡を問わない任意のフェルミオン系に対して成り立つCooperペアの運動量分布の普遍的な上限についても議論したい。

[1] M. Nakagawa, N. Tsuji, N. Kawakami, and M. Ueda, Phys. Rev. Lett. 124, 147203 (2020). [2] M. Nakagawa, N. Kawakami, and M. Ueda, Phys. Rev. Lett. 126, 110404 (2021). [3] M. Nakagawa, N. Tsuji, N. Kawakami, and M. Ueda, arXiv:2103.13624.

第42回

日時: 2021年3月29日(月)11:00- ※講演者の都合により延期になりました
発表者: 金杉翔太(京大)
発表題目: 多バンド系におけるアナポール超伝導の理論

第41回

日時: 2021年3月8日(月)11:00-
発表者: 國見昌哉(分子研)
発表題目: 冷却原子系における準古典近似を用いた非平衡ダイナミクスの研究

登録フォーム

冷却原子気体では、レーザー等の実験技術を駆使することにより、制御可能かつクリーンな量子多体系を実験的に実現することが可能である。このことを利用し、数値計算が困難である大自由度の量子多体ハミルトニアンを実験的にできるだけ忠実に実装し、”実験的に”多体シュレーディンガー方程式を解いてもらう、というのがファインマンが提唱した量子シミュレーションの概念である。実際に、冷却原子系、イオントラップ系、Rydberg原子系等を舞台とした様々な量子シミュレーションが行われている。 実験的にハミルトニアンがきれいに実装できるとはいうものの、より信頼性のある結果を得るためには可能な範囲内で理論計算との定量的な比較が重要である。本講演では実際の量子シミュレーションとの比較に用いられ、実験の定量的な再現に成功しているTruncated-Wigner近似(TWA)[1,2]を用いた研究結果を紹介する。TWAは一種の準古典近似であり、実時間ユニタリー時間発展を記述する手法である。特長としては、平均場近似を超えた近似法であること、大きなサイズ、高次元系への適用が可能などが挙げられる。 本講演の前半では、3次元Bose-Hubbard模型におけるクエンチダイナミクスをTWAを用いて計算した結果を紹介する。また、その結果と京都大学高橋グループが行った3次元光格子中のボース気体の実験結果を比較し、両者がフィッティングパラメータ無しでよく一致することを示す[3]。講演の後半では、量子スピン系に特化したTWAであるdiscrete TWA(DTWA)の計算結果を紹介する[4]。本研究ではDTWAを用いてRényiエンタングルメントエントロピーを計算する新しい手法の開発をした。また、これを利用したDTWAによる近似が妥当な時間スケールを評価する手法の提案をしたのであわせて紹介する。 [1] P. B. Blakie, et al., Adv. Phys. 57, 363 (2008). [2] A. Polkovnikov, Ann. Phys. 325, 1790 (2010). [3] K. Nagao, MK, Y. Takasu, Y. Takahashi, and I. Danshita, Phys. Rev. A 99, 023622 (2019). [4] MK, K. Nagao, S. Goto, and I. Danshita, Phys. Rev. Research, 3, 013060 (2021).

第40回

日時: 2021年3月1日(月)11:00-
発表者: 篠原 康(東大)
発表題目: 固体からの高次高調波発生の時間依存スペクトルの半古典ダイナミクスによる記述と、時間依存Hartree-Fockへの拡張

登録フォーム

10 V/nm級の光電場を物質に照射した際に、入射光の数十倍の光子エネルギーを持った電磁波が輻射される高次高調波発生と呼ばれる現象は気相(主に希ガス)による実験で確認された。この現象は、3ステップモデルと呼ばれる、1) 電子のイオン化, 2)電場による自由粒子様イオン化電子の加速, 3)親イオンへの再衝突という簡便な古典模型/描像でよく理解できる事が知られている[1]。 2011年、Ghimire等がZnO結晶から高次高調波発生の観測を報告した[2]。そのスペクトルのいくつかの特徴が気相におけるものと違い、議論を呼んだ。結晶は各々独自の電子状態をもっていて、強い電場で電子が駆動された際に、電子がどのように動き、そしてその運動の情報を高調波のスペクトルにどう焼き付けるかも結晶に応じて変わりうる。これは希ガスのような球対称系とは対照的である。結晶においては、電子間の相互作用を無視してもなお、特定の電子状態がどのような高調波を生成するかを説明する簡便な描像の決定版は未だ得られていない。 我々は、強い電場で駆動された結晶中電子のダイナミクスと、それがどのように輻射スペクトルに反映されるかを説明する簡便な描像を得るために、固体版の3ステップモデルともいうべき解析法を考案して、独立電子の一次元結晶における量子シミュレーションから得られる結果と比較した[3]。我々の解析法では3ステップモデルを固体版に翻訳したもので、i) 結晶ではエネルギー準位に禁制帯があるのでそこでの遷移を考慮すること ii) 価電子帯はエネルギーに幅があるので、全ての価電子帯から出発した電子の軌跡か考慮する の二点が原版との大きな違いである。我々の古典的な解析法は、量子シミュレーションで評価した時間分解スペクトルの形状をよく記述していることを示した。我々はこの理解を基に、一次元結晶の時間依存Hartree-Fock方程式の結果の解釈にとりくんだ[4]。その結果、平均場のレベルで考慮された電子・正孔対の間の引力が、電子・正孔対生成を促進する兆候を見出した。 セミナーでは、これらの詳細と、これらの模型をより詳細に理解するための最近の取り組みについて紹介する。

[1] P. B. Corkum, Phys. Rev. Lett. 71 (1993) 1994. [2] Shambhu Ghimire, Anthony D. DiChiara, Emily Sistrunk, Pierre Agostini, Louis F. DiMauro & David A. Reis, Nature Physics 7 (2011) 138.[3] Takuya Ikemachi, Yasushi Shinohara, Takeshi Sato, Junji Yumoto, Makoto Kuwata-Gonokami, Kenichi L. Ishikawa, Phys. Rev. A 95 (2017) 043416. [4] Takuya Ikemachi, Yasushi Shinohara, Takeshi Sato, Junji Yumoto, Makoto Kuwata-Gonokami, and Kenichi L. Ishikawa, Phys. Rev. A 98 (2018) 023415.

第39回

日時: 2021年2月22日(月)11:00-
発表者: 内藤 智也(東大)
発表題目: 物性理論は原子核理論の夢を見るか? ―原子核理論と物性理論のクロスオーバー

登録フォーム

物性物理 (原子, 分子, 固体) は電子の多体問題, 原子核物理は陽子と中性子 (核子) の多体問題と捉えられる. 電子, 陽子, 中性子は全てフェルミオンであることから, 原子核物理と物性物理は全てフェルミオンの多体問題であると捉えられ, 魔法数 (閉殻構造) などの共通した性質を持つ [1, 2] 一方, 相互作用の違いに由来する異なる性質も多く知られている. また, 原子核もフェルミオン多体系であることから, 密度汎関数理論や波動関数理論など, 電子系と共通した微視的な計算手法が広く用いられている [3]. 本講演では, まず, 原子核構造について簡単のレビューののち, 電子系と原子核の共通点・相違点に着目した原子核変形の起源に関する研究 [4] と, クーロン力の原子核構造への影響に関する近年の研究 [5, 6, 7] について簡単に紹介する. [1] K. Hagino and Y. Maeno. Found. Chem. 22, 267 (2020). [2] Y. Maeno, K. Hagion, and T. Ishiguro. Found. Chem. (In press). [3] J. A. Maruhn, P.-G. Reinhard, and E. Suraud. “Simple Models of Many-Fermion Systems” (Springer, 2010). [4] T. Naito, S. Endo, K. Hagino, and Y. Tanimura. arXiv:2009.05955 [physics.atom-ph] (2020). [5] T. Naito, R. Akashi, and H. Liang. Phys. Rev. C 97, 044319 (2018). [6] T. Naito, X. Roca-Maza, G. Colò, and H. Liang. Phys. Rev. C 99, 024309 (2019). [7] T. Naito, X. Roca-Maza, G. Colò, and H. Liang. Phys. Rev. C 9101 0263011 (2020).

第38回

日時: 2021年2月15日(月)11:00-
発表者: 池田 暁彦(ISSP)
発表題目: 超強磁場に誘起されるLaCoO3の励起子凝縮 〜ひずみ計測による研究〜

登録フォーム

相関電子系ではせめぎ合う2相の境界領域に新奇相が発現する。近年、固体中の励起子自由度から多軌道相関電子系を理解する試みがなされた結果、モット絶縁体とバンド絶縁体の境界領域に励起子絶縁体相が現れることが予言され着目されている 。実験ではスピンシングレットの励起子凝縮が遷移金属カルコゲナイド系で、スピントリプレット励起子の凝縮がコバルト酸化物系で候補とされている。なかでも磁場中のLaCoO3がトリプレット励起子凝縮の有力候補として報告されたが [1, 2]、実験的実証は進んでいなかった。これは実験的困難として、超強磁場を要することと、その中での観察手段が限られることに起因していた。近年、物性研では1000 T発生装置の稼働に成功し [3]、その中で利用できる磁歪測定装置の開発が進んだ [4]。そこで我々は、超強磁場中でLaCoO_3_のスピン状態変化(励起子数の変化)をひずみを通じて測定することを試みた。

これまでに実験により600 Tまでの磁歪計測を、初期温度5 , 78 , 108 Kの条件で得ることに成功した。この結果、超強磁場中に複数の相が存在することがわかった。まず低温領域にある磁場に対してギャップを持つ相(α相)[5]は600 Tまで安定であることがわかった。30 K以上100 T以上で発現するβ相はこれまでの実験でギャップを持つと考えていたが [5]、今回磁場範囲が大きく広がったことでギャップレスであることがわかった。さらに > 380 Tの領域に新たなギャップレス相(γ相)が発現することがわかった[6]。我々はα相の起源として励起子の超格子相(Solid)、βとγ相の起源として励起子凝縮相(BEC)の可能性を検討している。セミナーではこれらの現状を紹介する。

[1] T. Tatsuno et al., J. Phys. Soc. Jpn. 85, 083706 (2016). [2] A. Sotnikov and J. Kunes, Sci. Rep. 6, 30510 (2016). [3] A. Ikeda et al., Rev. Sci. Instrum. 88, 083906 (2017). [4] D. Nakamura, A. Ikeda et al., Rev. Sci. Instrum. 89, 095106 (2018). [5] A. Ikeda et al., Phys. Rev. Lett. 125, 177202 (2020). [6] A. Ikeda et al., unpublished.

第37回

日時: 2021年2月8日(月)11:00-
発表者: 後藤 慎平(近畿大)
発表題目: 冷却原子気体の観測誘起転移

登録フォーム

量子系のユニタリ時間発展は系の持つ量子性の指標であるエンタングルメントエントロピーを一般に増大させる。一方で環境との相互作用の結果である観測は、非ユニタリな影響を系に及ぼしてエンタングルメントエントロピーを減少させることがある。そしてこれらユニタリ時間発展と観測の効果の競合によって、古典シミュレーション可能な程度のエンタングルメントしか持たない面積則状態と一般に古典シミュレーション不可能な体積則状態の間に転移が生じることが最近の量子回路模型の研究から明らかになった [1-3]。我々はこの観測によって誘起される転移が冷却原子系で実現しうるか、またどのように検出できるかについて研究を行ったので [4] その結果について解説する。冷却原子系はユニタリ時間発展が観測可能なほど良い孤立系であり、また外部レーザーによって観測を導入することでその影響さえ制御可能である [5]。我々は散逸下の空間一次元Bose-Hubbard模型を数値的に解析することにより、冷却原子系においても観測誘起転移が生じることを示した。またエンタングルメントエントロピーは散逸下では実験的に測定することが非常に困難であるため、状態を特徴づける代わりの測定量が必要となる。そこで実験で測定可能な運動量分布とダイナミクスを計算してみたところ、系の状態を反映した振る舞いを見せることが分かった。

[1] Y. Li, X. Chen, and M. P. A. Fisher, Phys. Rev. B 98, 205136 (2018). [2] A. Chan et al., Phys. Rev. B 99, 224307 (2019). [3] B. Skinner, J. Ruhman, and N. Adam, Phys. Rev. X 9, 031009 (2019). [4] S. Goto and I. Danshita, Phys. Rev. A 102, 033316 (2020). [5] T. Tomita et al., Sci. Adv. 3, e1701513 (2017).

第36回

日時: 2021年2月1日(月)11:00-
発表者: 石塚 淳(京大)
発表題目: ウラン系超伝導体UTe2の最近の進展と第一原理計算によるトポロジカル超伝導予測

登録フォーム

2018年末にウラン系化合物UTe2において超伝導が報告され、強磁性臨界点近傍のスピン三重項超伝導体の可能性が議論されており大きな注目を集めている[1, 2]。他のウラン系強磁性超伝導体URhGeなどとは異なり、常圧で強磁性が起こっていないことは実験研究にとって極めて有利であり、スピン三重項超伝導の特性を調べるのに理想的な系であるといえる。また、時間反転対称性が保たれていれば、これまでとは異なるクラスのトポロジカル超伝導となっている可能性がある。本講演では、これまでに明らかとなったUTe2の電子状態や超伝導特性について解説する。UTe2の第一原理バンド計算は、絶縁体を予言するため実験の金属的な振舞いと大きな矛盾がある。そこでまず我々は、電子相関を取り入れるためGGA+U法を用いてUTe2の電子状態を調べた[3]。結果、クーロン相互作用U = 1 eV付近で絶縁体金属転移を観測し、金属的な電子状態を得た。このフェルミ面に基づいて超伝導状態のトポロジカルな性質を解明した。その結果、空間群Immmの全ての可能な奇パリティ超伝導は、Uが中間的な領域でトポロジカルに非自明であることを示した。さらに、有効的な周期アンダーソン模型を構築し、磁気揺らぎによって誘起される超伝導について調べたところ、スピン三重項状態(B3u状態とAu状態)とスピン一重項状態(Ag状態)が安定となることを示した[4]。

[1] S. Ran, et al., Science 365, 684 (2019). [2] D. Aoki, et al., J. Phys. Soc. Jpn. 88, 043702 (2019). [3] J. Ishizuka, S. Sumita, A. Daido, and Y. Yanase, Phys. Rev. Lett. 123, 217001 (2019). [4] J. Ishizuka and Y. Yanase, arXiv:2008.01945 (2020).

第35回

日時: 2021年1月25日(月)11:00-
発表者: 金子 竜也(コロンビア大)
発表題目: η-pairing状態の光誘起理論

登録フォーム

光を用いたポンプ-プローブ法によって相関電子系の非平衡物性を捉えることが可能となったことを背景に、非平衡過程を経て誘起される量子状態の研究が進んでいる[1]。本講演では、Mott絶縁体の励起状態であるη-pairing状態に着目し、その光誘起理論について解説する。η-pairing状態は約30年前に数理物理学者の楊振寧 (C. N. Yang) によって指摘されたHubbard模型の厳密な固有励起状態で、長距離に発達したペア密度波的な超伝導相関を有する状態である[2]。η-pairing状態は基底状態で実現しなかったためあまり注目されてこなかったが、我々は厳密対角化法などを駆使し、η-pairing状態が光照射によって誘起できることを理論的に示した[3]。特に、外場を印加したHubbard模型におけるη-pairing相関の上昇が、Hubbard模型の対称性とそれに基づく光学的選択則から説明できることを明らかにした[3]。また、我々は光誘起状態の伝道特性がη-pairing相関と深く結びついていることも示した[4]。今回はη-pairingの数学的な背景もふまえ、対応する数値計算の結果も示しながら、光誘起η-pairingの理論について紹介する予定である。

[1] C. Giannetti, M. Capone, D. Fausti, M. Fabrizio, F. Parmigiani, and D. Mihailovic, Adv. Phys. 65, 58 (2016). [2] C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989). [3] T. Kaneko, T. Shirakawa, S. Sorella, and S. Yunoki, Phys. Rev. Lett. 122, 077002 (2019). [4] T. Kaneko, S. Yunoki, and A. J. Millis, Phys. Rev.Research 2, 032027 (2020). [5] 金子竜也, 白川知功, 柚木清司, 固体物理 55(1), 21-29 (2020).

第34回

日時: 2021年1月18日(月)11:00-
発表者: 石塚 大晃(東工大)
発表題目: テラヘルツ光によるスピン流・軌道流の整流効果

登録フォーム

光を用いた磁性体の制御(光スピントロニクス)は,高輝度のレーザーの発達により現実的な研究課題となっている.これらの研究では磁荷の制御に主眼が置かれており,スピン流に関してはスピンポンプなど拡散流に限られており,太陽電池のような整流効果による流れの直接制御については最近まで研究されてこなかった. 本講演では,テラヘルツ光を用いた磁性体や半導体における整流効果について解説する.講演の前半では磁性体の磁気励起を用いたスピン流の整流について,一次元スピン鎖におけるスピノン流の整流[1]と,反強磁性秩序におけるマグノンによる整流効果[2]に関する非線形応答理論を用いた我々の最近の研究について紹介する.具体的なモデルを用いた計算からは,現在得られるレーザー強度でも観測可能なスピン流が得られることが解った.また,様々なセットアップを用いた解析から,反転対称性の破れた磁性体であれば,一般にスピン流の生成ができることを確認した.これらの結果は反転対称性の破れた系を対象としているが,反転対称なトポロジカル絶縁体においても光による軌道流の整流ができることを最近見出した[3].時間があれば,本結果についても紹介する.

[1] H. Ishizuka & M. Sato, Phys. Rev. Lett. 122, 197702 (2019). [2] H. Ishizuka & M. Sato, Phys. Rev. B 100, 224411 (2019). [3] M. Davydova et al., in preparation.

第33回

日時: 2021年1月12日()11:00- 注:曜日がいつもと違います
発表者: 古谷 峻介(茨城大)
発表題目: 量子スピン系の磁化プラトーとアノマリー

登録フォーム

Lieb-Schultz-Mattis (LSM) 定理は最近、様々な系・文脈において研究されているが、元の定理はS=1/2 XXZ量子スピン鎖がuniqueかつgappedな基底状態を持たないことを主張するものであった。LSM定理は量子多体系のU(1) fluxへの応答という観点で定式化することができる。LSM定理は時間反転対称性存在下で議論されることが多いが、量子スピン系においてこのU(1) fluxによる定式化は、磁場存在下の状況に容易に拡張でき、量子スピン系の磁化プラトー上の基底状態縮退度(の下限)についての制限を課す。この条件はOshikawa-Yamanaka-Affleck条件[1]として知られ、2次元や3次元の量子スピン系でも成り立つことが経験的に知られている。最近ではLSM定理とその関連する現象が、量子相に対応する場の理論の持つ’t Hooftアノマリーの観点から調べられている[2]。他方で、磁化プラトーの性質のアノマリーによる研究はあまり行われていないのが現状である。 本講演ではLSM定理とOshikawa-Yamanaka-Affleck条件、そしてアノマリーという観点から、フラストレート磁性体の磁化プラトー上の基底状態の性質を議論する。まず、チェッカーボード上の反強磁性Heisenberg模型の磁化プラトー上の基底状態のアノマリーを、空間的なtwistを伴う境界条件下で調べる[3]。次にカゴメ格子や三角スピンチューブ上の量子スピン系における1/3プラトー上の基底状態の共通点と違いについて、SU(3) Wess-Zumino-Witten理論のアノマリー[4]を使って議論する[5]。

[1] M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. Lett. 78, 1984 (1997). [2] S. C. Furuya and M. Oshikawa, Phys. Rev. Lett. 118, 021601 (2017). [3] S. C. Furuya and Y. Horinouchi, Phys. Rev. B 100, 174435 (2019). [4] Y. Yao, C.-T. Hsieh, and M. Oshikawa, Phys. Rev. Lett. 123, 180201 (2019). [5] S. C. Furuya, Y. Horinouchi, and T. Momoi, arXiv:2011.13095.

第32回

日時: 2020年12月21日(月)11:00-
発表者: 関孝一(新潟大)
発表題目: ランダム量子スピン系での実空間数値くりこみ群法

登録フォーム

相互作用にランダムネスを含んだ二次元量子フラストレートスピン系では、スピン液体のような物理量の振る舞いを示す可能性が指摘されており[1,2]、現在も活発な研究が行われている。これまでの研究では、厳密対角化法や量子モンテカルロ法を用いた数値計算が行われてきた。しかし、これらの手法にはシステムサイズや扱える模型に制限があるため、二次元ランダム量子スピン系を効率よく計算する新しい手法の開発は重要なテーマである。一方で、一次元ランダムスピン系においては、Maらによる実空間くりこみ群法[3]および、スピンブロック間のエネルギーに着目して状態を選択する改良[4]によって、定量的に良い基底状態が得られることが示されている。

そこで我々は、スピンブロック間のエネルギースケールに着目することで、実空間数値くりこみ群法に対するさらなる改良を行い、二次元ランダム量子スピン系の数値計算への適用と性能評価を行った。特に、反強磁性相互作用にボックスタイプのランダムネスが存在するS=1/2ハイゼンベルグ模型に対する数値計算を行い、ランダムネスの強さを変えて基底状態を求めた。セミナーでは、実空間数値くりこみ群法に対する改良点および、正方格子・三角格子に対する計算結果や、モデルと改良型数値繰り込み群法の相性の詳細等について紹介する。

[1] T. Shimokawa, K. Watanabe, and H. Kawamura, Phys. Rev. B 92, 134407 (2015). [2] K. Uematsu and H. Kawamura, J. Phys. Soc. Jpn. 86, 044704 (2017). [3] S.-k. Ma, C. Dasgupta, and C.-k. Hu, Phys. Rev. Lett. 43, 1434 (1979). [4] T. Hikihara, A. Furusaki, and M. Sigrist, Phys. Rev. B 60, 12116 (1999).

第31回

日時: 2020年12月14日(月)11:00-
発表者: 工藤耕司(筑波大)
発表題目: 量子ホール効果の断熱接続における一般化ストレーダ公式

登録フォーム

断熱過程におけるトポロジカル数の不変性は、近年のトポロジカル相の理論の基礎である。その源流の一つとして、adiabatic heuristic argument[1]が挙げられる。これによると分数量子ホール(FQH)状態は、粒子の統計性を変化させることで、整数量子ホール(IQH)状態に断熱的に変形できる。この議論はFQH状態のギャップの起源を説明する上で大変有用だが、統計性を規定する組紐群との整合性に注意する必要がある。例えば、バルクギャップを調べる上で重要な周期系では、組紐群の代数的制約から統計性の連続変形は許されない。さらに周期系で生じるトポロジカル縮退は、この断熱変形に一層複雑な構造をもたらすため、トーラス上におけるその正当性はより非自明な問題となる。

本研究で我々は、トーラス上のadiabatic heuristic argumentの正当性を数値的に示すとともに、「トポロジカル不変性の本質は状態の連続性ではなくギャップの連続性にある」ことを示唆する一般化ストレーダ公式を見出した[2]。まず我々は、多体状態の連続変形はできないもののIQH・FQH間のギャップは連続かつ断熱的につながることを数値的に示した。その過程においてトポロジカル縮退度は不規則に変化するが、多体チャーン数は断熱不変量となった。さらに不変量としての多体チャーン数が、縮退度の変化を記述することを解析的に示した。この関係式は、ホフスタッターの蝶におけるストレーダ公式と類似した構造を示唆している。

[1] M. Greiter and F. Wilczek, Modern Physics Letters B 04, 1063 (1990); M. Greiter and F. Wilczek, Nuclear Physics B 370, 577 (1992). [2] K. Kudo and Y. Hatsugai, Phys. Rev. B 102, 125108 (2020)

第30回

日時: 2020年12月07日(月)11:00-
発表者: 望月健(北大)
発表題目: フロケ系や開放系特有のトポロジカルな現象:量子ウォークを舞台として

登録フォーム

過去数十年に渡って、対称性に守られたトポロジカル相に関する膨大な研究が行われ、電子系における新奇現象の発見や既知現象の再解釈が成されてきた。近年では、電子系のみならず光学系においても非自明なトポロジカル相に由来する現象が議論されている[1]。

本講演では、そのような光学系の一種である量子ウォークに着目し、トポロジカルな現象を調べる。量子ウォークでは系のパラメータを通じてトポロジカル数を制御できるため、光子の存在確率から実空間で直接的にエッジ状態を観測する事が可能である[2]。そのため、量子ウォークの様々なトポロジカル相及びそれに由来するエッジ状態が調べられてきた。量子ウォークのダイナミクスとシュレーディンガー方程式もしくはディラック方程式のダイナミクスは類似性が高いため、量子ウォークは時間非依存ハミルトニアンを生成子とするユニタリダイナミクスの“シミュレータ”と称される事が多い。実際、量子ウォークのトポロジカル相に関する多くの性質は、時間非依存ハミルトニアンで記述される電子系との類推から理解できる。しかし、実験的制約から現時点ではそのような“シミュレーション”は決して効率的ではない。また、電子系の“模倣”は新しい光学デバイスなどの応用可能性を秘めている一方で、本質的に新しい現象の発見及び理解には繋がり辛いと考えられる。

本研究では、時間非依存ハミルトニアンで記述される孤立系との類推からは理解できない現象を探索するため、量子ウォークの持つ二つの特徴に着目した。一つ目は、光の増幅減衰効果の制御性である。増幅減衰効果が存在する量子ウォークは、非ユニタリな時間発展演算子で記述される開放系となる。二つ目は、量子ウォークはフロケ系の一種であり離散的な時間発展をする事である。その結果我々は、開放フロケ系特有の長寿命エッジ状態が出現する事を明らかにした[3]。この時、エッジ状態の存在はカイラル対称性に守られ、寿命の延びは空間時間反転対称性の破れに起因する。我々の理論予想は単一光子を用いた系で実証され、それは開放量子系における時間空間反転対称性の破れに対する初の観測実験となった[4]。さらに時間があれば、時間グライド対称性というフロケ系特有の対称性に起因するトポロジカル相についても紹介したい[5]。

[1] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto. Review of Modern Physics, 91 015006 (2019). [2] T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White. Nature communications, 3 882, (2012) [3] Ken Mochizuki, D. Kim, N. Kawakami, and H. Obuse, arXiv:1609.09650. [4] L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, Ken Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B. C. Sanders, and P. Xue, Nature Physics 13, 1117 (2017). [5] Ken Mochizuki, T. Bessho, M. Sato, and H. Obuse, Physical Review B 102, 035418 (2020).

第29回

日時: 2020年11月30日(月)11:00-
発表者: 永井瞭(ISSP)
発表題目: 機械学習手法を用いた交換相関汎関数の構築とその展望

登録フォーム

密度汎関数理論(DFT)は、穏やかな計算量で比較的高精度な計算を可能とするため、電子状態計算における標準的な手法として用いられている。しかし、DFTの電子間相互作用を書き表す部分の中に、厳密に書き下せない交換相関汎関数という部分が存在する。

我々は機械学習の手法を用いて交換相関汎関数を系統的に構築する手法を研究している。まず、単純な1次元系において手法を適用し、DFTの数式操作の中に機械学習で構築された汎関数が有効であることを示す。その後、実際の物質への手法の拡張について紹介する。小分子の厳密な電子状態データをもとに機械学習を行うことで、幅広い分子系に用いることができる汎関数を構築した事例を示す。 また、交換相関汎関数のような立式が困難な理論に対して機械学習を用いることによって期待される改善や新たな知見について議論する予定である。

[1] R. Nagai, R. Akashi, S. Sasaki, and S. Tsuneyuki: Neural-network kohn-sham exchange-correlation potential and its out-of-training transferability. J. Chem. Phys. 148, 241737 (2018). [2] R. Nagai, R. Akashi and O. Sugino: Completing density functional theory by machine learning hidden messages from molecules. npj Comput. Mater. 6, 43(2020).

第28回

日時: 2020年11月24日()11:00- 注:曜日がいつもと違います
発表者: 高橋惇(中国科学院 物理研究所)
発表題目: 脱閉じ込め量子臨界現象に対する“de-signer”ハミルトニアンによるアプローチ

登録フォーム

反強磁性的な基底状態として古典的にはstaggered磁化を持つNéel状態が代表的だが、量子系特有の状態としてスピンのSU(2)などの対称性を保ったまま空間対称性のみを自発的に破るvalence-bond固体(VBS)状態も複数種類存在する。これらの間のNéel-VBS転移は最も「基本的」な量子反強磁性体における量子相転移と言えるが、その詳しい性質は未解明である。素朴なGinzburg-Landau描像に立てば二つの相は全く関係のない対称性を自発的に破るため、直接転移は一般的には不連続転移になると予想される。しかし、二つの相を秩序の欠陥が別の様態で閉じ込められている状態とみなし、いくつかの理論的仮定を置くことで転移点では欠陥が脱閉じ込めを起こし一般に臨界的(連続転移)になるという、場の理論によるDeconfined Quantum Criticality (DQC)のシナリオも提案されている[1]。DQCの成立を巡っては理論的[2]、数値的[3]、そして実験的[4]な研究も盛んに行われているが、未だに決着はついていない。

そこで本研究では負符号問題を避けつつ目標の相図を持つハミルトニアンをデザインするという“de-signer”ハミルトニアンの思想[5]に基づいて、実際のNéel-VBS転移の様子を量子モンテカルロ法によって調べるアプローチを取った。プラケット型VBS(PVBS)という従来実現されていなかったVBS状態からのPVBS-Néel転移を起こす模型を構成し、その結果今まで調べられていた柱状VBS(CVBS)と異なり、弱い不連続転移を示すことが分かった[6]。興味深いことに、転移点直上ではO(3)のNéel秩序とO(2)のVBS秩序が非自明に混合し創発的なSO(5)対称性を生じるという理論的予言[2]を部分的に実現していた。またPVBS秩序に残るZ2対称性を更に自発的に破る相転移も発見し、PVBS相が「破れうる対称性を途中までしか自発的に破らない」中間相であると判明した。このような多段階の離散的対称性の破れを手軽に整理し、可能な相図のトポロジーを議論するためのグラフ理論的な枠組みについても紹介する。

時間が許せば、ある意味でCVBSとPVBSの中間とみなせるような、今まで議論されていなかったヘリカルvalence-bond相へのNéel相からの直接転移を起こす模型をde-signerハミルトニアンの枠組みで発見/構成した研究[7]についても紹介したい。

[1] T. Senthil, et al., Science 303 1490 (2004). [2] C. Wang, et al., Phys. Rev. X 7 031051 (2017). [3] H. Shao, et al., Science 352 213 (2016). [4] J. Guo, et al., Phys. Rev. Lett. 124 206602 (2020). [5] R. K. Kaul, et al., Annu. Rev. Condens. Matter Phys. 4 179 (2013). [6] J. Takahashi and A. W. Sandvik, Phys. Rev. Research 2 033459 (2020). [7] B. Zhao, J. Takahashi, and A. W. Sandvik, arXiv:2005.10184 (2020).

第27回

日時: 2020年11月16日(月)11:00-
発表者: 磯部大樹(MIT)
発表題目: ファンホーブ特異性のもたらす電子相関物性:超伝導・絶縁体状態および非フェルミ流体

登録フォーム

グラフェン2層の超格子構造における絶縁体および超伝導状態の実験的観測に端を発し,ファンデルワールス物質からなる超格子構造における電子相関効果の研究が実験と理論の両面から盛んに行われている.このような物質系では,積層の自由度に制御された幅の狭いエネルギーバンドにおいて電子相関効果が強く現れる.本セミナーでは,まず2層グラフェンにおける絶縁体および超伝導状態をファンホーブ特異点とフェルミ面のネスティングに着目して理論的に説明することを試みる[1].解析は繰り込み群の手法を用いる.続いて,2層グラフェンにおける魔法角をファンホーブ特異性の観点から考察する[2].すなわちグラフェン2層の相対角度の制御により,ファンホーブ特異点における状態密度の発散がエネルギーの関数としてべき的になることを示し,それに対応する角度を魔法角と見なせることを説明する.このような状態を,一般に高次ファンホーブ特異性と呼ぶこととする.最後にこの高次ファンホーブ特異点における電子相関効果について議論する[3].繰り込み群による解析により,非フェルミ流体が安定な固定点として生じることを示す.

[1] H. Isobe, N. F. Q. Yuan, and L. Fu, Phys. Rev. X 8, 041041 (2018). [2] N. F. Q. Yuan, H. Isobe, and L. Fu, Nat. Commun. 10, 5769 (2019). [3] H. Isobe and L. Fu, Phys. Rev. Research 1, 033206 (2019).

第26回

日時: 2020年11月9日(月)11:00-
発表者: 岩﨑祐昂(東大)
発表題目: バンドエンジニアリングによる近似結晶半導体の探索と熱電材料への応用

登録フォーム

準結晶は並進対称性と両立しない回転対称性を持った固体であり、これまでに70種類以上の熱力学的に安定な準結晶が確認されてきた。しかし、それらの電子状態はいずれも金属であり、原子スケールで半導体や絶縁体的な性質を持ったものは見つかっていない。準結晶半導体が存在するかどうかは固体物理学の基本的な問題の一つであると同時に高性能熱電材料への応用も期待されている[1]。準結晶と同じクラスターを持ち,それが周期的に配列した構造を有する近似結晶は,準結晶の物性を理解する際に重要な概念であり,両者を比較するアプローチによって準結晶の理解が深められてきた。周期性を持たない準結晶のバンド構造を計算し、半導体を見つけるのは困難であるが、近似結晶であればそれは可能であるため、近似結晶半導体の探索は準結晶半導体を発見するための良いアプローチとなり得る。本発表では、第一原理計算を援用したアルミ系近似結晶半導体の探索についての一連の研究について紹介する。

近年、Mihalkovičらによる計算の結果、Al-Ir系1/0近似結晶が特定の組成と結晶構造を満たしたときに、40 meV程度のバンドギャップを有する半導体となる可能性が指摘された[2]。しかし、実験的には、Alの原子欠損により半導体化は実現せず、高圧合成[3]や元素置換[4]による欠損の抑制を試みたがいずれも半導体化には至らなかった。そこでバンドギャップが確認されているAl-Ir系1/0近似結晶を基に、第一原理計算により、ギャップの大きさを制御する指針を確立し、その指針に基づいて近似結晶半導体を探索した。第一原理計算によって価電子帯上端と伝導体下端を構成する軌道を可視化することで、Alの一部をSiで置換し、IrをRuで置換した、Al-Si-Ru系が0.26 eV程度のギャップをもつ半導体になる可能性を見出した。この予想に基づいて、Al-Si-Ru系で近似結晶の合成を試み、Al67.6Si8.9Ru23.5近傍の組成で、1/0近似結晶の単相試料が作製できることが分かった。単相試料の熱電物性測定から、Al-Si-Ru系近似結晶が半導体的な特性を示すことが分かった。第一原理計算と実験値の比較から、バンドギャップは0.15 eV程度であると考えられ、初めて近似結晶半導体を実験的に作製することに成功した[5]。

時間に余裕があれば、Al-Si-Ru系近似結晶の熱電特性の最適化や高次近似結晶の探索に関する最近の研究についても紹介したい。

[1] Y. Takagiwa and K. Kimura, Science and Technology of Advanced Materials 15, 044802 (2014). [2] Yutaka Iwasaki, Koichi Kitahara and Kaoru Kimura, Journal of Alloys and Compounds 763, 78 (2018). [3] 岩﨑祐昂,北原功一,木村 薫, 日本熱電学会誌, 16, 139 (2020). [4] Y. Iwasaki, Koichi Kitahara, and Kaoru Kimura, Journal of Alloys and Compounds 851 156904 (2021). [5] Yutaka Iwasaki, Koichi Kitahara, and Kaoru Kimura, Physical Review Materials 3, 061601 (2019).

第25回

日時: 2020年11月2日(月)11:00-
発表者: 山本大輔(青学)
発表題目: 磁場中SU(3) Heisenberg模型の量子相と隠れたネマティック性を持つスピンダイポール秩序

登録フォーム

固体物質系では通常スピン自由度σ=↑,↓を持つ電子が主役となるため、Hubbard模型やHeisenberg模型といった代表的な統計模型はN=2次の特殊ユニタリ群SU(2)の対称性(もしくはそれ以下)を持つ。より高次の対称性(N>2)はスピン液晶物質や遷移金属酸化物などの模型において、複数の異なる相互作用の大きさがたまたま一致するときにしか得られない。したがってN>2の高次対称性を固体物質で実現するためには系のパラメータの偶発的なfine-tuningか、何らかのエキゾチックな発現機構による創発的なSU(N>2)相としての出現が必要となる。

一方で近年、レーザー光の対向波のよるポテンシャル(光格子)中に閉殻構造を持つ173Yb原子や87Sr原子などのアルカリ土類(様)原子気体を充填することで、直接的にSU(N)の拡張Hubbard模型やHeisenberg模型を作成する試みが盛んに為されている。例えば173Yb原子は(閉殻構造のために)電子スピン由来のスピン自由度は持たないが、核スピンI=5/2に由来して6成分の自由度を持つ。この成分間の散乱長はすべて等しく等価であり、さらに光ポンピングの操作によって6成分のうちのいくつかのみに偏らせることもできる。実際、既にSU(3), SU(4)やSU(6)などのHubbard系におけるMott絶縁体の作成[1,2]や超格子構造を用いた短距離磁気相関の観測[3]などが実験的に達成されている。

本研究ではSU(3)系に対する強磁場効果を議論する。強磁場の印加は磁性体研究の基本的な物性計測実験であり、格子幾何やトポロジー、量子・熱ゆらぎとの協奏効果によって磁化プラトーやネマティック状態、磁場誘起スピン液体などの非自明な磁気状態を生み出すことが知られている。ここでは三角格子上のSU(3)反強磁性Heisenberg模型に対する磁場効果を調べた[4]。密度行列繰り込み群をソルバーとした大規模クラスター平均場+スケーリング法[5]を用いて絶対零度の量子磁性を、直積状態近似波動関数を用いた準古典Monte Carlo法を用いて有限温度の相転移現象を議論した。その結果、磁化およびスカラーネマティック秩序変数の磁場依存性における非自明なプラトーの形成、副格子スピン(ダイポール)モーメントが有限な強磁場相における「隠されたネマティック秩序」を持つ“ネマティック-スピンダイポール相”、渦度1/2を持つ分数渦対励起が誘起するトポロジカル相転移などの様々な興味深い物性現象を見出した[4]。SU(3)対称点から若干ずれた場合(スピン-1 bilinear-biquadratic模型に対応)にこれらの性質が保たれるか否かに関しても議論したい。

[1] S. Taie, R. Yamazaki, S. Sugawa, and Y. Takahashi, Nat. Phys. 8, 825 (2012). [2] C. Hofrichter et al., Phys. Rev. X 6, 021030 (2016). [3] H. Ozawa, S. Taie, Y. Takasu, and Y. Takahashi, Phys. Rev. Lett. 121, 225303 (2018). [4] D. Yamamoto et al., Phys. Rev. Lett. 125, 057204 (2020). [5] D. Yamamoto, G. Marmorini, and I. Danshita, Phys. Rev. Lett. 112, 127203 (2014).

第24回

日時: 2020年10月26日(月)11:00-
発表者: 兎子尾理貴(京大)
発表題目: 空間反転対称性が破れた高伝導金属における流体力学的異常輸送現象

登録フォーム

近年、graphene, PdCoO2, WP2等を代表とする、様々な高伝導金属・半導体において、「流体力学領域(hydrodynamic regime)」と呼ばれる、新しいクラスの非平衡領域が実現していることが明らかになってきた[1-3]。この領域では、不純物・フォノン散乱などの運動量緩和散乱が強く抑制された結果、電子-電子散乱が最も支配的な散乱プロセスとなり、電子系のダイナミクスは流体力学理論によって有効的に記述されることが理論的に予言される。そして実際にこのような兆候が近年、メゾ系での「負の非局所抵抗・磁気抵抗」[3,4]や電荷中性点近傍のgrapheneでの「Wiedemann-Franz 則の破れ」[5]などを通して実験的に確認され、実験と理論の両面から多くの関心を集め始めている。特に、近年実現したNoncentrosymmetricな電子流体物質(bilayer-graphene, WP2等)は空間反転対称の破れに伴う有限のBerry 曲率によって、これまでにない異常な流体力学的応答を実現すると期待されるため、これら結晶対称性や幾何学的性質の効果を流体力学と統合することは今日、極めて重要な課題になっていると言える。

そこで、本研究[6] では空間反転対称が破れた金属における流体力学理論を定式化し、空間反転対称性の破れ・Berry曲率がもたらす非従来的な流体力学的輸送応答を明らかにした。この拡張された流体力学理論では、ミクロなBloch波動関数が示す幾何学的効果が流体スケールにおいて付加的な駆動力として記述され、電子流体に特殊なflow(異常エッジ電流、非対称性Poiseuille flowなど)を引き起こす。特に興味深いのは、これらの系においてカイラル渦効果(渦誘起の異常電流)を結晶系に一般化した新奇な異常輸送現象(Generalized vortical effect: GVE)が発現する点であり、これは「空間反転対称が破れた系における電子流体」と「真空中のカイラル流体」との間にある種のアナロジーが成り立っていることを示している。本講演では、微視的モデルに基づいた定量的評価を与えるとともに、上記の輸送応答を観測する実験的セットアップも提案したい。

[1] P. J. W. Moll, et al., Science 351 1061 (2016). [2] R. K. Kumar, et al., Nat. Phys. 13 1182 (2017). [3] J. Gooth, et al., Nat. Comm. 9 4093 (2018). [4] P. S. Alekseev, Phys. Rev. Lett. 117 166601 (2016). [5] J. Crossno, et al., Science. 351 6277 (2016). [6] R. Toshio, K. Takasan and N. Kawakami, Phys. Rev. Research 2, 032021(R).

第23回

日時: 2020年10月19日(月)11:00-
発表者: 村上雄太(東工大)
発表題目: 励起子絶縁相の非線形応答と非平衡誘起

登録フォーム

励起子絶縁相とは、電子とホールのペアである励起子が自発的に凝縮することで生じる秩序相である。 予言から半世紀以上経った現在でも励起子絶縁相を示す物質は見つかっていないが、 平衡状態と非平衡状態の両方のセットアップで出現する可能性が指摘されており、その実現/発見に向けて精力的に研究が進められている。 本発表では、我々が最近行なった、i) 平衡状態における励起子絶縁相の集団励起と非線形応答に関する研究[1][2]と、 ii) 強相関電子系における非平衡状態として現れる励起子絶縁相に関する研究[3]、を紹介する。

平衡系においては、近年Ta2NiSe5などの遷移金属カルコゲナイト系の物質が励起子絶縁相を示す候補物質としてあげられ、注目を浴びている[4]。 しかし、現実物質では電子格子相互作用によっても似たような物性を示す秩序相が出現しうるため、励起子絶縁相の同定が困難である。 異なる秩序相の起源は、物質の集団励起の性質に反映されることが期待される。 そこで、我々は、格子自由度と結合した励起子絶縁相を考え、その集団励起モードの性質を明らかにした[1]。 有限の電子格子相互作用により位相モードは有限のギャップを持ち、線形応答の範囲ではフォノンモードとの区別が難しくなるが、 これらのモードを共鳴的に励起した時の応答が、位相モードとフォノンモードで大きく異なることがわかった。 講演では、このような非線形応答の違いとそれを用いたモードの同定に関する議論を行うとともに、 実空間実時間分解ポンププローブ実験を用いた集団励起モード観測の可能性[2]に関しても議論する。

一方、励起子絶縁相は、光励起された半導体の非平衡定常状態においても実現すると考えられている。 これまで、非平衡定常状態による励起子絶縁相の出現は報告されていないものの、光励起中の半導体において 励起子絶縁相に類似したコヒーレントな過渡状態が報告された[5]。このような状態は系が熱化する前の prethermalな状態と捉えることができるが、このような状態は電子間相互作用や電子格子交互作用による散乱 が弱い場合に長寿命になる。 我々は、励起された強相関電子系においても長寿命のprethermalな状態が実現しうることに注目し、 スピン遷移近傍の多軌道ハバード模型の非平衡ダイナミクスを動的平均場理論を用いて調べた[3]。 これにより、多軌道強相関系においてもprethermal状態において励起子絶縁相が実現することを 明らかにした。講演では、ダイナミクスの詳細に加え、有効模型を用いた解析を紹介し、 過渡的な励起子絶縁相の出現が局所的なエントロピー保存とエネルギー保存に由来することを議論する。

[1] Y. Murakami, D. Golež, T. Kaneko, A. Koga, A. J Millis, P. Werner, PRB(Editors’ suggestion) 101, 195118(2020) ; D. Golez, Z. Sun, Y. Murakami, A. Georges, A. J Millis, arXiv:2007.09749 [2] P. Andrich, H. Bretscher, Y. Murakami,et al., arXiv:2003.10799. [3] P. Werner and Y. Murakami, arXiv:2006.02096. [4] Y. Wakisaka et al., PRL 103, 026402 (2009). [5] Y. Murotani, et al., PRL 123, 197401 (2019).

第22回

日時: 2020年10月12日(月)11:00-
発表者: 井戸康太(東大物性研)
発表題目: 励起状態のための変分モンテカルロ法

登録フォーム

変分モンテカルロ法(VMC)は様々な量子多体系を負符号問題なく解析できる強力な数値計算手法である。VMCでは多数の変分パラメータを試行波動関数に導入することで様々な量子状態を柔軟に表現できるが、その適用の多くは、エネルギーや秩序変数などの静的物理量の測定に基づいた基底・低励起状態の解析に留まっていた。近年、VMCの枠組みで励起状態を求める研究が活発に行われている。本講演では、我々が開発してきた励起状態のためのVMCに関連した研究を2つ紹介する。

まず、有限温度の物理量を計算するためのVMCを紹介する。近年、熱的純粋状態(TPQ)などの発展により、各温度の混合状態を再現できる純粋状態が生成できるようになってきた[1]。この考えを元に、我々は純粋状態に基づいた有限温度VMCを開発した[2]。Hubbard模型におけるベンチマークの結果、エネルギーなどの物理量の温度依存性がTPQによる結果をよく再現することを示した。

二つ目に、動的構造因子やスペクトル関数などの動的物理量の計算方法を紹介する。VMCを用いた動的物理量の計算手法として、スピンの動的なゆらぎの情報を含んだスピン動的構造因子を計算する手法が提案されている[3]。この手法は量子スピン鎖のスピン励起を高精度に計算できることが示されており[4]、中性子散乱による実験結果との比較にも使われてきている[5]。このようにVMCを用いたスピンダイナミクスに関する研究は発展しているものの、共鳴非弾性X線散乱などで測定される電荷ダイナミクスは未だに計算できるよう拡張されていない。我々は、VMCに基づいた遍歴電子系における電荷動的構造因子を計算する手法を開発した[6]。Hubbard模型におけるベンチマークの結果、Mottギャップを生み出すと考えられている複合粒子が電荷ゆらぎを高精度に捉えるうえで重要な役割を担っていることが明らかになった。

[1] S. Sugiura and A. Shimizu, Phys. Rev. Lett. 108, 240401 (2012). M. Imada and M. Takahashi, J. Phys. Soc. Jpn. 55, 3354 (1986). J. Jaklič and P. Prelovšek, Phys. Rev. B 49, 5065 (1994). A. Hams and H. De Raedt, Phys. Rev. E 62, 4365 (2000). [2] K. Takai, K. Ido, T. Misawa, Y. Yamaji and M. Imada, J. Phys. Soc. Jpn. 85, 034601 (2016). [3] T. Li and F. Yang, Phys. Rev. B 81, 214509 (2010). [4] F. Ferrari, A. Parola, S. Sorella, and F. Becca, Phys. Rev. B 97, 235103 (2018). [5] B. Dalla Piazza, et al., Nat. Phys. 11, 62 (2015). [6] K. Ido, M. Imada, T. Misawa, Phys. Rev. B 101, 075124 (2020).

第21回

日時: 2020年10月5日(月)11:00-
発表者: 小野淳(東北大)
発表題目: 反強磁性ディラック半金属におけるネールベクトルの高速光制御

登録フォーム

反強磁性体は外部磁場の擾乱に対して頑強であることや強磁性体に比して高いエネルギースケールを持つことから,スピントロニクス分野においても精力的に研究が進められている.空間・時間反転対称性を持つ反強磁性状態における交替磁化(ネールベクトル)を制御する原理の一つとして,スピン軌道相互作用を介して定常電流から誘起される交替的な非平衡磁化(ネールスピン軌道トルク)を用いるものが理論的に提案され,実際にネールベクトル方向の電気的なスイッチングが可能であることが報告されている[1].また,ある種の非共型な空間群対称性によりディラック点や線ノードが保護される場合があることが知られているが,これによりネールベクトルを介してトポロジカルな電子構造を操作するというアイディアが提案され[2],トポロジカル反強磁性スピントロニクスという新たな分野が生まれている[3].一方で,反強磁性体の典型的なエネルギースケールはテラヘルツ程度であり,これに対応するピコ秒程度の高速なダイナミクスは実験と理論共にほとんど明らかになっていない.

本研究では反強磁性ディラック半金属に注目し,直流電場ならびにテラヘルツパルスによって誘起される実時間ダイナミクスを解析した.局在的な古典スピン系のランダウ・リフシッツ・ギルバート方程式に加えて遍歴的な電子系のシュレーディンガー方程式を連立して解くことで,磁気構造と電子構造の両者を取り扱う解析を行った.閾値を超える外部電場の印加により,ピコ秒程度に相当する時間スケールでネールベクトルが回転し,これに伴ってディラック点のギャップが変化することが見出された.ここではネールスピン軌道トルクのみならず磁気異方性も重要な役割を果たしている.本セミナーではこれらの詳細について説明するとともに,磁気光学効果を用いたネールベクトル方向の高速時間分解測定の可能性についても議論する.

[1] J. Železný et al., Phys. Rev. Lett. 113, 157201 (2014); P. Wadley et al., Science 351, 587 (2016). [2] L. Šmejkal, J. Železný, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 118, 106402 (2017). [3] L. Šmejkal, Y. Mokrousov, B. Yan, and A. H. MacDonald, Nat. Phys. 14, 242 (2018).

第20回

日時: 2020年9月28日(月)11:00-
発表者: 永井恒平(京大)
発表題目: 高強度光駆動下における固体電⼦系の動的対称性とその実験的検証

登録フォーム

高強度レーザー光電場に周期的に駆動される固体中の電子状態はフロケ状態の観点から議論され、実験ではフロケ・ブロッホバンドの観測[1]や光誘起異常ホール効果の観測[2]などによってフロケ状態の存在が確認されている。フロケ状態の生成および制御は光による超高速な物性制御の実現に向けて期待されており、対称性はそのために最も重要な概念である。中でも動的対称性は時間並進、反転操作と空間対象操作を組み合わせたもので、非摂動論的な光と物質の相互作用の下で起こる高次高調波発生(HHG)の理解に有用であるとして1993年に元々のアイデアが発案され[3]、2019年にフロケ群論として定式化が行われた[4]。しかし、これまでほぼすべての動的対称性の研究がHHGの偏光選択則の理解を目的としていたものであり、また固体における動的対称性の実験的な検証も乏しかった。

我々は固体における非摂動論的な光学過程である高次サイドバンド発生(HSG)の偏光選択則の理解に対して動的対称性を応用し、その実験的検証を行った[5]。HSGは半導体に対してバンド間遷移に近共鳴な弱強度のパルス光と高強度赤外パルス光を同時照射することで生じる高次の和周波発生過程であり、2色の光を制御することでHHGより詳細に固体中の電子の励起状態を調べられるとして注目されている。これまでHSGは高強度電場下での電子の実時間発展に注目して研究されてきた[6]。我々はHSGをフロケ状態におけるラマン散乱過程として捉え直すことで、動的対称性によるHSGの偏光選択則の理解を可能にした。また、我々は実験的にHSGの偏光選択則を調べ、理論と比較した。対象の半導体として遷移金属ダイカルコゲナイドの単一原子層薄膜を用いることでHSGにおいて本質でない伝搬効果を避けて実験を行った。偏光選択則を系統的に調べた結果が理論的に予想された選択則と完全に一致し、固体における動的対称性を実証できた。

[1] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [2] McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16,38–41 (2020). [3] Ben-Tal, N., Moiseyev, N. & Beswick, A. The effect of Hamiltonian symmetry on generation of odd and even harmonics. J. Phys. B 26, 3017–3024 (1993). [4] Neufeld, O., Podolsky, D. & Cohen, O. Floquet group theory and its application to selection rules in harmonic generation. Nat Commun 10, 405 (2019). [5] Nagai, K., Uchida, K., Yoshikawa, N. et al. Dynamical symmetry of strongly light-driven electronic system in crystalline solids. Commun Phys 3, 137 (2020). [6] Zaks, B., Liu, R. B. & Sherwin, M. S. Experimental observation of electron–hole recollisions. Nature 483, 580–583 (2012).

第19回

日時: 2020年9月23日()11:00- 注:曜日がいつもと違います
発表者: 田村駿(名大工)
発表題目: カイラル対称性を持つ系における奇周波数クーパー対の理論

登録フォーム

超伝導体のクーパー対はクーパー対を成す2電子の入れ替えに関する対称性によって分類される.通常の超伝導体ではスピン一重項s波やスピン三重項p波などが考えられてきたが,2電子の時間に関する入れ替えも考慮すると,これらのクーパー対は時間の入れ替えに関して偶関数になっている.時間の入れ替えに関して奇関数になる場合についても考慮するとスピン一重項p波やスピン三重項s波などがあり得る.時間の入れ替えに関して奇関数になるようなクーパー対は奇周波数クーパー対と呼ばれ,偶周波数クーパー対の示す磁場を排斥するマイスナー効果とは逆の常磁性マイスナー効果を示すなどの特徴を持つ.奇周波数クーパー対は一般的にバルクでは不安定であるが,超伝導体の表面などには広く存在することが理論研究により示されており[1],μSRによる実験でその存在が確認されている[2,3].近年,トポロジカル超伝導体においてバルクの偶周波数クーパー対を超える量の奇周波数クーパー対が表面に誘起されることが理論的に示唆されており,トポロジカル数と奇周波数クーパー対の間に何らかの関係があることが予想されていた.

本セミナーでは奇周波数クーパー対に関して簡単な紹介をした後,多体相互作用のない一次元のカイラル対称性がある系に関して奇周波数クーパー対とトポロジカル数の関係について紹介する[4,5].

[1]Y. Tanaka and N. Nagaosa, J. Phys. Soc. Jpn. 81, 011013 (2012). [2]A. Di Bernardo, et al., Phys. Rev. X 5, 041021 (2015). [3]J. A. Krieger, et al., Phys. Rev. Lett. 125, 026802 (2020). [4]S. Tamura, S. Hoshino and Y. Tanaka, Phys. Rev. B 99, 184512 (2019). [5]A. Daido and Y. Yanase, Phys. Rev. B 100, 174512 (2019).

第18回

日時: 2020年9月14日(月)11:00-
発表者: 藤原理賀(東京理科大)
発表題目: カムチャツカ半島産低次元磁性体における量子スピン状態

登録フォーム

量子スピン液体状態は,スピンフラストレーションを内包する低次元磁性体での観測が期待されている.しかしスピンフラストレーションは,格子の僅かな歪みや弱い鎖間・層間相互作用であっても解消されてしまうため,モデル物質の探索が難航する場合が多い.

無機化合物の場合,構成元素と結晶構造を自在に操作することは難しい.よって結晶構造が既知である鉱物は,低次元磁性体の良い探索領域であると言える.カムチャツカ半島には多くの火山が存在する.加えてこの地帯には銅鉱床が存在するため,新種の銅鉱物が多く発見され,その数は現在も増え続けている [1].カムチャツカ半島産銅鉱物の結晶構造を調査したところ,スピンフラストレーションを内包し得る低次元量子磁性体が多く存在することが判明し,これらの鉱物が生成された自然環境を模倣することで,数種類の新低次元量子磁性体の開発に成功した.

本セミナーでは,正方カゴメ格子反強磁性体の初のモデル物質であるアトラス鉱 KCu6AlBiO4(SO4)5Cl [2]、辺共有四面体量子スピンクラスタ鎖と名付け研究を続けてきたフェドトフ鉱 K2Cu3O(SO4)3 [3] を中心に、それらのスピン状態を紹介したい.これらの鉱物では,極低温においても磁気秩序が形成されないため,理想的な低次元量子磁性体であるといえる.J-PARCおよびANSTOに設置されている複数の分光器を利用して行われた中性子非弾性散乱実験の結果,前者では量子スピン液体状態、後者ではハルデン状態の形成を示す実験結果が得られた。詳細は当日紹介するが、発表者が開発したその他の低次元磁性体の研究結果についても,時間の許す限り紹介したい [4, 5]。

[1] Scientific Investigations Report 2010-5090-W. [2] M. Fujihala et al., Nat. Commun. 11, 3429 (2020). [3] M. Fujihala et al., Phys. Rev. Lett. 120, 077201 (2018). [4] M. Fujihala et al., Sci. Rep. 7, 16785 (2017). [5] M. Fujihala et al., Phys. Rev. B 101, 024410 (2020).

第17回

日時: 2020年9月7日(月)11:00-
発表者: 小野清志郎(東大)
発表題目: 対称性指標に基づくトポロジカル超伝導相の分類と物質探索への応用

登録フォーム

マヨラナ粒子のプラットフォームであるトポロジカル超伝導体は、今なお精力的に研究されている。超伝導体のトポロジーを研究するもう1つの意義は、トポロジーと超伝導相の性質に密接な関係があることだ。例えば、安定な超伝導ノード構造がトポロジーによって系統的に理解されている[1]。ここ数年、結晶対称性とトポロジーの研究には急速な進展があった。これまでは、トポロジカル不変量をブロッホ関数の空間反転対称性の固有値で計算できるFu-Kane公式[2]がその簡便さから重宝されていた。近年その一般化として、結晶対称性の既約表現からトポロジカル相を判定する対称性指標[3]が提案された。さらにこの理論を密度汎関数計算と組み合わせることで、データベースのトポロジカル(結晶)絶縁体探索が行われトポロジカル絶縁体・半金属データベースが完成した[4]。最近の研究[5]により、超伝導体の対称性指標は既約表現だけでなく、Pfaffian不変量が重要な役割を果たすことが明らかになった。しかしPfaffian不変量は0、または1に値を取るため、従来の方法で系統的に計算することが困難であった。実際、これまではごくわずかの対称性に対してのみ個別に計算されていた。

そこで我々は数学的に等価な補助問題を導入することで、Pfaffian不変量を含めて対称性指標を系統的に計算できるように定式化し、磁気空間群の1次元表現に属する秩序変数を持つ超伝導体全てに対して対称性指標を計算した[6]。本セミナーでは、絶縁体の対称性指標をレビューしたのちに、トポロジカルに自明な超伝導体を再考する[7]。最後に、Pfaffian不変量を含めた対称性指標の定式化するための補助問題を説明し、物質への応用を紹介する。

[1] 例えば、S. Kobayashi, et al., Phys. Rev. B 97, 180504 (2018)., S. Sumita, et al., Phys. Rev. B 99, 134513 (2019). [2] L. Fu and C. L. Kane, Phys. Rev. B. 76, 045302 (2007). [3] H. C. Po, A. Vishwanath, and H. Watanabe, Nat. Commun. 8, 50 (2017). (See also B. Bradlyn et al., Nature, 566, 298-305 (2017)) [4] T. Zhang, et al., Nature, 566, 475-479 (2019)., M. G. Vergoniry, et al., Nature, 566, 480-485 (2019)., F. Tang, et al., Nature, 566, 486-489 (2019). [5] K. Shiozaki, arXiv:1907. 13632., M. Geier, et al., Phys. Rev. B 101, 245128 (2020). [6] S. Ono, H. C. Po, and K. Shiozaki, arXiv:2008.05499. [7] A. Skurativska, T. Neupert, and M. H. Fischer, Phys. Rev. Research 1, 013012 (2019)., S. Ono, H. C. Po, and H. Watanabe, Sci. Adv. 6, eaaz8367 (2020).

第16回

日時: 2020年8月24日(月)11:00-
発表者: 野村悠祐(理研)
発表題目: 機械学習手法を用いた量子多体系の研究 ー手法拡張を含む最近の進展

登録フォーム

指数関数的に大きな次元を持つ量子多体系の波動関数を有限個のパラメータで精度よく表すことは、物性物理のみならず素粒子、原子核、量子化学などに共通するグランドチャレンジである。本講演では機械学習で用いられるボルツマンマシンが量子多体波動関数表現に有用であることを紹介する。

前半では、隠れ層が二層ある深層ボルツマンマシン(DBM)を用いると、基底状態の波動関数を任意の精度で解析的に表現することが可能であることを示す[1]。これは経路積分を包含するより一般的な量子古典対応のフレームワークを提供するが、物理量計算に隠れ層自由度をモンテカルロサンプリングする必要性があるため負符号問題が生じる場合がある[1]。

一方で、隠れ層が一層に制限された制限ボルツマンマシン(RBM)では、DBMのように解析的な表現はできないものの、数値的にパラメータを最適化することで、量子多体波動関数の表現が可能になる。RBMの良いところは解析的に隠れ層自由度をトレースアウトできるところであり、量子系の数値計算を行う上では負符号問題を回避できる点でDBMより利点がある場合がある。RBMを用いた手法は、フェルミオン系、フェルミオン-ボソン結合系、フラストレーションのあるスピン系な度への適用が進んでおり、講演の後半部分でそれら一連の研究について紹介する[2-4]。

[1] G. Carleo, Y. Nomura, and M. Imada, Nat. Commun. 9, 5322 (2018) [2] Y. Nomura, A. S. Darmawan, Y. Yamaji, and M. Imada, Phys. Rev. B 96, 205152 (2017) [3] Y. Nomura, J. Phys. Soc. Jpn. 89, 054706 (2020) [Editor’s choice] [4] Y. Nomura and M. Imada, arXiv:2005.14142

第15回

日時: 2020年8月17日(月)11:00-
発表者: 渡邉光(京大)
発表題目: 磁気的なパリティの破れに誘起される円偏光ガルバニック効果

登録フォーム

光によって直流電流を生み出す光電流応答は太陽電池や光検出器などに応用されており、 我々の実生活にとって重要な物性応答といえる。交流外場によって直流電流を取り出すため、 応答には反転対称性の破れが必要とされる。典型例としての半導体pn接合では作り付けの内部電界が その役割を担っているが、一方で結晶のミクロな構造も同様の役割を果たす。この、ミクロな 反転対称性の破れに誘起される光電流、いわゆるバルク光電流の理解は急速に進められており、 強誘電体などを題材に多くの研究がなされている。また、TaAsなどのトポロジカル物質と組み合わせる ことで巨大な光電流応答が得られることが分かっており、近年のトポロジカル物性の発展と 相まって、光電流応答の研究は更なる展開を見せている [1] 。

これら目覚ましい発展がある一方、光電流を調べるセットアップは非磁性体がほとんどであった。 マルチフェロイックスや反強磁性スピントロニクス分野で議論されるように [2] 、 反転対称性は 磁気秩序によっても破られるが、そのような磁性誘起の光電流応答に着目した研究は少ない。 非磁性的・磁気的な反転対称性の破れが系の電子状態に与える影響は定性的に全く異なるから、 光電流応答にもその違いが色濃く反映されるものと期待できる。

そこで我々は、非磁性的・磁気的な反転対称性の破れを持つ系の基本的な対称性を利用し、 光電流応答を系統的に分類した [3] 。その結果として、これら二つのタイプの破れが対照的な役割を果たす ことを明らかにすることができた。分類結果は先行研究を包括するだけでなく、磁性体に特有な新しい光電流の クラスを明らかにしている。本セミナーでは新たな応答として、円偏光によって誘起される光電流 について議論する。この応答は、非磁性体に特徴的ないわゆるシフトカレントと双対的な関係にある。 時間があれば、この新奇な光電流応答がトポロジカル物質において大きく増強される可能性についても議論したい。

[1] 例えば. J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, & N. Gedik, Nat. Nanotech. 7, 96 (2011). [2] M. Fiebig, J. Phys. D. Appl. Phys. 38, R123 (2005); V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018). [3] HW & Y. Yanase, arXiv:2006.06908; 同様の結果として J. Ahn & N. Nagaosa, arXiv:2006.06709

第14回

日時: 2020年8月3日(月)11:00-
発表者: 原口祐哉(東京農工大)
発表題目: 新規ハニカム格子化合物における量子物性の探索

登録フォーム

ハニカム格子は、最近接・次近接相互作用の拮抗(J_1-J_2ハニカム)やボンド方向に依存したイジング的な相互作用(キタエフ相互作用)に由来するフラストレート物理の舞台として近年精力的に研究が行われている。これらのモデル物質となる化合物は少ないため、完全な物性解明には至っていないのが現状である。無機化合物の探索には固相反応法は用いることがほとんどであるが、単純な固相反応法ではすでに莫大な物質が調べられている上に熱力学的に安定な典型的な構造を取る。一方、低温メタセシス反応は非平衡プロセスが多用されているため、相図の枠組みを超えた準安定相を合成することができるという利点をもつ。

本公演では、登壇者が開発した層状岩塩型化合物からイルメナイト型への低温メタセシス反応を用いて合成した5つの新規ハニカム格子磁性体MgMnO3, ZnMnO3, MgIrO3, ZnIrO3, CdIrO3における合成および実験的物性研究について紹介する。これらの化合物はいずれも500°C程度で分解する準安定相であることが確かめられた。マンガンハニカムについて、MgMnO3ではJ_1およびJ_2がいずれも反強磁性である一方ZnMnO3ではJ_1が強磁性・J_2が反強磁性となり、いずれもJ_1-J_2フラストレートハニカム格子になっていることがわかった。またイリジウムハニカムでは、三種類の化合物の結晶構造と磁性の変化の系統性から、Irイオン周りの三方晶歪の増大にともないキタエフ磁性から遠ざかっていることが明らかになった。これらの結果から、イルメナイト型酸化物における理想的なJ_1-J_2フラストレート磁性およびキタエフ磁性の実現可能性とそれに向けた物質設計の指針について提案したい。

第13回

日時: 2020年7月27日(月)11:00-
発表者: 青山和司(阪大)
発表題目: 磁性絶縁体のスピン伝導とトポロジカル転移

登録フォーム

2次元の磁性体において容易面(XY)的磁気異方性がある場合には、トポロジカル欠陥である渦励起の存在に伴いKosterlitz-Thouless(KT) 転移が生じる。一方、2次元のフラストレート磁性体の 典型例である三角格子上の古典Heisenberg反強磁性体においては、スピンの120°構造に起因したZ2渦と呼ばれる特殊渦の出現とそのKTタイプのトポロジカル転移(渦対-単独渦転移)の存在が川村・ 宮下によって理論的に提案されている[1]。今回我々は、これらのトポロジカル転移が系の輸送現象にどのような影響を与えるのかを調べた。

線形応答理論に基づく数値解析により、スピン流の伝導率がトポロジカル転移温度において発散的な増大を示すことが明らかとなった[2]。Z2渦転移は比熱や帯磁率などに明確な異常が現れないため検出が困難であったが、我々の結果は、スピン流測定がトポロジカル転移を検出する有力なプローブになることを示唆している。

[1] H. Kawamura and S. Miyashita, J. Phys. Soc. Jpn. 53, 4138 (1984). [2] K. Aoyama and H. Kawamura, Phys. Rev. Lett. 124, 047202 (2020); Phys. Rev. B 100, 144416 (2019).

第12回

日時: 2020年7月21日()11:00- 注:曜日がいつもと違います
発表者: 岩木惇司(東大)
発表題目: 熱的量子純粋行列積状態

登録フォーム

比熱や磁化率の温度依存性は、系の低エネルギー状態の情報を含む基本的な物理量であり、実験との比較を通して理論モデルを検証する上でも重要な役割を果たす。しかし、相互作用の強い量子多体系において、これらを計算する汎用的で簡便な方法がないことが長年の課題である。例えば、有限温度対角化の手法はシステムサイズが高々30程度までに限られ、量子モンテカルロ法には負符号問題がある。困難の主な原因は、有限温度の状態がギブズ状態と呼ばれる量子混合状態であることにある。

混合状態のアンサンブル平均を取ることを回避する方向性の一つとして、典型性という考え方を元にギブズ状態を熱的純粋量子(TPQ)状態と呼ばれる純粋状態で代表させる方法があり、TPQ状態を計算機上で比較的容易に生成する有効な方法論がいくつか提案されている[1]。ところがこの方法では純粋状態を表現するために扱う変数の数がシステムサイズに対して指数関数的に大きくなるため計算コストの節約にはならず、やはりシステムサイズが高々30程度しか扱えない。システムサイズを大きくするためには何らかの近似が必要であるが、有限温度の純粋状態のエンタングルメントエントロピーが体積則に従うことがこれを難しくしている。システムサイズに対して多項式的な数の変数で純粋状態を記述する行列積状態(MPS)は、歴史的には密度行列繰り込み群の変分関数として導入され[2]、エンタングルメントの小さい基底状態の物理量を簡便な計算で求めることに成功している。

本研究[3]では、あえてMPSを用いてTPQ状態を構築することを試みた。MPS単独では有限温度量子純粋状態を表現できないだろうというナイーブな予想に反し、今回、MPSに補助系(auxiliary)を付けることにより、系が保持するべき基底の数を確保し、ほぼ基底状態と同じ計算コストで諸物理量を得ることに成功したので、その詳細について述べたい。

[1]A. Hams and H. De Raedt, Phys. Rev. E 62, 4365 (2000); S. Sugiura and A. Shimizu, Phys. Rev. Lett. 108, 240401 (2012) [2]J. Dukelsky, M. A. Martín-Delgado, T. Nishino and G. Sierra, Europhys. Lett. 43, 457 (1998) [3]A. Iwaki, A. Shimizu and C. Hotta, arXiv:2005.06829

第11回

日時: 2020年7月13日(月)11:00-
発表者: 野本拓也(東大)
発表題目: 第一原理計算に基づくGd系スカーミオン物質の研究

登録フォーム

近年Gd2PdSi3[1]、Gd3Ru4Al12[2]およびGdRu2Si2[3]などのGd系化合物でスカーミオン相が観測され、注目を集めている。これらの系は常磁性相で空間反転対称性を保ち、実現するスカーミオン格子が数ナノメートルと小さな格子間隔をもつ点で、他のスカーミオン物質と一線を画している。現象論的な模型に基づく解析により、磁気フラストレーション[4]や高次スピン間相互作用[5]がこのようなスカーミオン格子を安定化させることが知られているが、格子間隔の小さな高密度スカーミオンは応用上も重要であり、第一原理計算に基づく形成機構の微視的な解明が望まれる。

本講演では、我々が最近行ったDFT+Lichtenstein法による、GdRu2Si2およびGd2PdSi3の磁気構造解析の結果について紹介する[6]。我々の計算は、磁気スパイラル相に関して、実験とコンシステントな転移温度および磁気格子間隔を与えるが、その発現機構は従来考えられてきたRKKY機構とは大きく異なっている。我々の解析によれば、有限波数の磁気構造は強磁性的なGd-5d間相互作用と反強磁性的なGd-4f間相互作用の競合で理解され、通常のRKKY相互作用は無視できるほど小さい。講演では第一原理計算に基づく磁気構造の計算手法と我々の研究の詳細について紹介する。

[1] T. Kurumaji et al., Science 365, 914 (2019). [2] M. Hirschberger et al., Nat. Commun. 10, 5831 (2019). [3] N. D. Khanh et al., Nat. Nanotechnol. 15, 444 (2020). [4] A. O. Leonov and M. Mostovoy, Nat. Commun. 6, 8275 (2015). [5] S. Hayami, R. Ozawa, and Y. Motome, Phys. Rev. B 95, 224424 (2017). [6] T. Nomoto, T. Koretsune, and R. Arita, arXiv:2003.13167.

第10回

日時: 2020年7月6日(月)11:00-
発表者: 松下太樹(阪大)
発表題目: 線ノード半金属におけるトポロジカルな圧電効果

登録フォーム

線ノード半金属は1次元のFermi線を有するトポロジカル半金属である。この物質固有の物性として、Drumhead表面状態や半量子化した電気分極、軌道磁化が知られており、精力的に研究されてきた[1,2]。しかし、この物質を特徴付ける応答や輸送現象は知られておらず、この物質のトポロジカル性がどのように物理現象に顔を出すかは未解決な問題として残されていた。  最近、電場応答で線ノード半金属のトポロジカル性が現れるかが検討された[3]。解析の結果、トポロジカルカレントは、Fermi線を構成する各二次元Dirac点の寄与を足し上げるとキャンセルされてしまうことが示されている。我々は、電気応答ではなくAxial電気応答を考えることで、トポロジカルカレントの相殺が避けられることに着目し研究を行った[4]。このセミナーではその成果について紹介する。Axial電場を得るための具体的な処方箋を示し、動的な格子歪みによってトポロジカルカレントが誘起できることを示す。また、動的な格子歪みによって誘起されるトポロジカルカレントは、線ノード半金属に存在する半量子化値をとる電気分極の運ぶ分極電流であることについても議論する。 [1] A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011). [2] S. T. Ramamurthy and T. L. Hughes, Phys. Rev. B 95, 075138 (2017). [3] W. B. Rui, Y. X. Zhao, and A. P. Schnyder, Phys. Rev. B 97, 161113 (2018). [4] TM, S. Fujimoto and A. P. Schnyder : arXiv:2004.11014(2020).

第9回

日時: 2020年6月29日(月)11:00-
発表者: 藤代有絵子 (東大)
発表題目: 高密度なトポロジカル磁気構造における巨大創発磁場と量子輸送現象

登録フォーム

トポロジカルに非自明な磁気構造は、伝導電子との結合によりゲージ場である創発磁場を生み出し、様々な電磁気応答をもたらす。特に最近では、磁気周期の短い(< 3 nm)高密度なスキルミオン格子・ヘッジホッグ格子が多くの物質で発見されており、巨大な創発磁場の舞台として注目されている。一方、2次元的なスキルミオン格子と3次元的なヘッジホッグ格子では、創発磁場の空間分布や外部磁場への応答が異なるため、劇的に異なる物性がこれまでに観測されてきた[1]。

本セミナーでは、カイラル磁性体MnGeにおける高密度なヘッジホッグ格子に着目し、巨大な創発磁場[2]とそのダイナミクス[3]がもたらす特異な量子輸送現象について、これまでの実験結果を紹介する。特に、ヘッジホッグ格子が磁場によって消失する強磁性転移付近では、既存の概念では説明のできないような、非自明な輸送現象が数多く観測されている。例えば、巨大な磁気ゼーベック効果[4]やトポロジカルホール効果の符号反転に加え、最近では既存の強磁性体の中でも最大級の異常ホール効果(ホール伝導度40,000 Ω-1cm-1、ホール角20 %)が出現することを発見した。強磁場測定を中心とした様々な検証実験と、関連する理論研究[5]の内容を紹介しつつ、ヘッジホッグ格子の消失に伴う巨大な磁気揺らぎという視点から、これらの実験結果を議論したい。

[1] Y. Fujishiro, N. Kanazawa, and Y. Tokura, Applied Physics Letters 116, 090501 (2020) [2] N. Kanazawa et al., Physical Review Letters 106, 156603 (2011) [3] N. Kanazawa et al., Nature Communications 7, 11622 (2016) [4] Y. Fujishiro et al., Nature Communications 9, 408 (2018) [5] H. Ishizuka and N. Nagaosa, arXiv:1906.06501

第8回

日時: 2020年6月22日(月)11:00-
発表者: 明石遼介 (東大)
発表題目: 第一原理計算に基づく高圧下における水素化物超伝導体の研究

登録フォーム

2014年末に報告された200ケルビンにおける硫化水素の超伝導転移を契機として、超高圧下における水素化合物の超伝導相の探索が近年盛んに進められている[1,2]。BCS理論によれば、フォノン機構による典型的な超伝導体の転移温度は電子間引力を媒介するフォノンの振動数に比例する。ゆえに最も軽い元素である水素を含む化合物を金属化できれば高温超伝導が実現する、という仮説は古くから提唱されており[3]、近年の発見はこの仮説を肯定的に証明したものとみられる。しかし、実際に圧力セルの中でどのような結晶相が形成されているかを確かめることは難しい。光や中性子などを用いた回折法により圧力セル内の水素の位置を決定することが困難なためである。一方、第一原理計算ならば任意の圧力下で熱力学的に安定な構造を探索し、電子・格子物性をシミュレートすることが可能である。どのような構造ならば測定された物性値を再現できるか、というアプローチから、第一原理シミュレーションはセル内の超伝導相について重要な示唆を与えてきた。

本講演では、我々が第一原理計算に基づき解明した高圧下水素化物の特殊な性質について紹介する。主要なトピックとしては、硫化水素金属相の(i)安定な結晶構造に類似した無数の準安定構造系列の存在 [4]、および(ii)電子状態がフェルミレベル近傍に特異的に集中し、ペアリングを増強する仕組み[5]について述べる予定である。

[1] A. P. Drozdov et al., Nature 525, 73 (2015). [2] J. A. Flores-Livas et al., Phys. Rep. 856, 1 (2020), for a review. [3] N. W. Ashcroft, Phys. Rev. Lett. 21, 1748; 92, 187002 (2004). [4] R. Akashi et al., Phys. Rev. Lett. 117, 075503 (2016). [5] R. Akashi, Phys. Rev. B 101, 075126 (2020).

第7回

日時: 2020年6月15日(月)11:00-
発表者: 道下佳寛 (京大)
発表題目: 強相関電子系における量子開放系としての性質及び非エルミート性

登録フォーム

近年、非エルミート有効ハミルトニアンで記述される新たな物性が注目を集めている。 例えば特異な臨界現象[1]、センサー感度の向上[2]、光の透過の非相反性の創出[3]、新 奇トポロジカル相[4,5], skin effect[6]などがある。非エルミート物性は主に二つの文脈、量子開放系と強相関電子系、において研究がなさ れている。量子開放系においては、ポストセレクションという観測結果に対する制限下で の密度演算子のダイナミクスを非エルミートハミルトニアンで記述する事ができ、また強 相関電子系においては、一体の Green 関数を記述するものとして特に条件を貸す事なく自 然に導入される。この二つの文脈で独立に研究が進んでいく一方で、両者での非エルミー トハミルトニアンの導入のされ方、導入される際の条件は異なっており、そもそも両者で 本当に同じものを考えているのか明らかではなかった。

そこで、本研究[7]では、強相関電子系を量子開放系として記述する事で、同じ模型に おける両者の文脈から得られる非エルミートハミルトニアンを比較することを目指す。そ の際、量子マスター方程式のダイナミクスは、Green 関数法におけるダイアグラムの手法 を用いて計算できることを示し、また結果として、同じ模型から出発した際に、量子開放 系の文脈で非マルコフ過程のもとで得られた非エルミートハミルトニアンと、強相関電子 系の文脈(Green 関数法の下)で得られたものは一致する事を示す。また、固体物質中での 電子のマルコフ的なダイナミクスと非マルコフ的なダイナミクスの、エネルギー分散(ス ペクトル関数)への寄与も明らかにする。

[1] Y. Ashida et al. , Nature communications 8, 15791 (2017). [2] W. Cheng et al. , Nature 548, 192 (2017). [3] A. Regensburger, et al, Nature 488, 167-171 (2012). [4] H. Shen et al. , PRL 120, 146402 (2018). [5] K. Kawabata et al. ,PRX 9, 041015 (2019). [6] S. Yao and Z. Wang PRL 121,086803 (2018). [7] Y. Michishita and R. Peters PRL 124,196401 (2020)

第6回

日時: 2020年6月8日(月)11:00-
発表者: 藤本純治 (中国科学院大学Kavli理論科学研究所)
発表題目: 動的ねじれによるマグノン流生成

登録フォーム

磁気と力学運動の結合に対する研究の歴史は長く,Einstein-de Haas効果などの磁気機械効果は現在も盛んに研究されている.特に,科学技術の進歩によってナノスケールの力学装置とスピンの結合に関心が向けられるようになった[1].これまでは半導体や金属などのナノメカニカルな装置が主流であったが,最近,磁性絶縁体のカンチレバーがサブミクロンの大きさで作製されるようになり[2],その磁気機械効果[3]に注目が集まっている. そこで,我々はそのようなナノメカニカルな強磁性絶縁体カンチレバーを考え,外的にねじれ振動が誘起されたときマグノン流が生成されるという新たな磁気機械結合を示した[4].具体的には,交換相互作用と容易軸異方性のみで構成されるシンプルな局在スピンのラグランジアンを仮定し,力学的なねじれの効果を容易軸の変調とみなすことで取り入れた.そしてスピンに対する局所的な回転変換を施すことで,力学的なねじれがスピンゲージ場として記述され,Dzyaloshinskii-Moriya(DM)相互作用を生むことを示した.このDM相互作用を外場としてマグノン流の線形応答を計算することで,ねじれ振動によるマグノン流生成を記述した.また,生成されたマグノン流は,逆スピンHall効果で検出可能な大きさであることを確認した.

[1] P. Mohanty et al., Phys. Rev. B 70, 195301 (2004); G. Zolfagharkhani et al., Nat. Nanotechnol. 3, 720 (2008). [2] Y.-J. Seo et al., Appl. Phys. Lett. 110, 132409 (2017). [3] K. Harii et al., Nat. Commun. 10, 2616 (2019). [4] J. Fujimoto, and M. Matsuo, arXiv:2004.14707.

第5回

日時: 2020年6月1日(月)11:00-
発表者: 山田昌彦 (阪大)
発表題目: アンダーソン・キタエフスピン液体

登録フォーム

半世紀以上にわたってアンダーソン局在の研究は行われてきたが、それは主に低次元の電子系やフェルミオン系においてである。磁気秩序を持った通常の磁性体においてはフェルミオンの励起が存在せず、アンダーソン局在とは違った枠組みで研究されていた。一方で、基礎励起がマヨラナフェルミオンで記述されるキタエフスピン液体においては状況が違っている。私はボンド乱れのあるキタエフ模型を研究し、キタエフスピン液体が乱れの増大に伴いアンダーソン局在を起こすことを発見した。カーネルポリノミアル法に基づく基底状態計算によると、少ない量の乱れでもマヨラナフェルミオンを局在化させるのに十分であり、量子化された熱ホール効果が次第に消え去ることがわかった。局在のメカニズムそのものが今までのアンダーソン局在とは違ったタイプのものであり、このことについても詳しく議論していきたい。

[1] M.G.Y., https://arxiv.org/abs/2004.06257

第4回

日時: 2020年5月25日(月)11:00-
発表者: 北谷基治 (理研)
発表題目: 動的バーテックス近似(DΓA)を用いた非従来型超伝導の研究

登録フォーム

動的平均場理論(DMFT)は相関電子系を扱う強力な多体手法であるが、自己エネルギーの波数依存性を無視してしまうために擬ギャップや異方的超伝導などの物理を記述できない。この問題点を克服するために、非局所的な揺らぎの効果を取り込む拡張が近年盛んに議論されている。

今回はDMFTのダイアグラム展開に基づく拡張[1]の一種である動的バーテックス近似(DΓA)を用いた非従来型超伝導に関する最近の我々の研究を紹介する。2次元Hubbard模型での電子スペクトルや超伝導転移温度の計算を通して、DMFTで得られる局所的なバーテックス関数の動的な構造(振動数依存性)が非局所的な揺らぎを通してペアリング相互作用にどのような構造をもたらすかを議論する[2]。また、最近発見されたニッケル酸化物超伝導に関する計算結果[3]も紹介する。

[1] For a review, see G. Rohringer et al., RMP 90 025003 (2018). [2] M. Kitatani et al., PRB 99 041115(R) (2019). [3] M. Kitatani et al., arXiv:2002.12230 (2020).

第3回

日時: 2020年5月18日(月)11:00-
発表者: 奥村駿 (東大)
発表題目: 空間反転対称性の破れた金属における磁気ヘッジホッグ格子の安定性とトポロジカル転移

登録フォーム

近年、空間反転対称性が破れた系に現れるカイラルな磁気テクスチャが注目を集めている。とりわけ、B20型の結晶構造をもつMnSi1-xGexでは、2次元的な磁気スキルミオン結晶や3次元的な磁気ヘッジホッグ格子といったトポロジカルに特徴的な磁気テクスチャが実現することが知られている[1]。特に、磁気ヘッジホッグ格子では、非共面的な磁気テクスチャの生み出す創発磁場が磁気モノポールと反モノポールを形成し、それに伴う巨大異常ホール効果や熱電効果などの特異な量子輸送現象を引き起こすことが観測されている。 こうした磁気ヘッジホッグ格子に関する理論研究としては、局在スピン模型を用いた計算が行われているが[2,3]、実験で見られるように低温かつゼロ磁場で磁気ヘッジホッグ格子が安定に存在することを説明できていない。さらに、連続体近似において磁気構造を仮定することで、磁気モノポールと反モノポールの磁場中での振る舞いも調べられているが[4]、離散的な格子の影響や、磁場中でのエネルギー最適化を考慮した解析が必要である。

本研究では、磁気ヘッジホッグ格子の安定化機構や外場に対する応答を調べることを目的とした研究を行ってきた。対象とする物質が金属的な性質を持つことに着目し、遍歴電子の効果とスピン軌道相互作用を取り入れた有効スピン模型の解析を行った。変分計算と焼きなまし法による数値シミュレーションの結果、ゼロ磁場での基底状態において磁気ヘッジホッグ格子が発現しうることを見出した。基底状態相図を解明することにより、短周期の磁気ヘッジホッグ格子を安定化させるためには、スピン電荷結合による双二次相互作用とスピン軌道結合によるDzyaloshinskii-Moriya相互作用の両方が重要であることを明らかにした。さらに、これらの磁気ヘッジホッグ格子に磁場を印加すると、磁気モノポールと反モノポールの対消滅による多段的なトポロジカル転移が起こりうることも明らかにした[5]。

[1] Y. Fujishiro et al., Appl. Phys. Lett. 116, 090501 (2020). [2] J. Park et al., Phys. Rev. B 83, 184406 (2011). [3] S. Yang et al., Phys. Rev. B 94, 054420 (2016). [4] X. Zhang et al., Phys. Rev. B 94, 174428 (2016). [5] S. Okumura et al., Phys. Rev. B 101, 144416 (2020).

第2回

日時: 2020年5月11日(月)11:00-
発表者: 植木輝 (北大)
発表題目: 第二種超伝導体の渦状態におけるホール効果

登録フォーム

銅酸化物超伝導体における熱ホール係数の符号反転が観測されて以来、第二種超伝導体の渦状態におけるホール効果の研究は実験的にも理論的にも盛んに行われてきた。しかし現在においても、私たちの渦状態におけるホール効果に関する理解が十分であるとは言い難い。その原因のひとつとして、通常、磁場中の超伝導体を研究するために用いられる、アイレンバーガー方程式(準古典方程式)にホール効果を記述するための項が欠落していることがあげられる。最近、私たちはゴルコフ方程式から出発し、ホール効果を記述する力を含むようにアイレンバーガー方程式を拡張した[1]。この拡張準古典方程式は銅酸化物超伝導体やCeCoIn5などでみられる、熱ホール角の増大についても研究できる。今回のセミナーでは、拡張準古典方程式を解くことによって得られた次の結果、(1)s波超伝導体における渦の帯電効果[1]、(2)渦の運動が伴う抵抗状態におけるホール効果[2]、(3)ピン止めされた渦をもつd波超伝導体におけるホール角の増大[3]、について報告する。

[1] H. Ueki, M. Ohuchi, and T. Kita J. Phys. Soc. Jpn. 87, 044704 (2018). [2] H. Ueki, Doctral thesis, Hokkaido University, 2017. [3] H. Ueki, H. Morita, M. Ohuchi, and T. Kita, arXiv:1903.10733.

第1回

日時: 2020年4月27日(月)11:00-
発表者: 光元亨汰 (豊田理研)
発表題目: 凍結した乱れのない系におけるスピングラス転移

スピングラス転移は、”quenched disorder”と、そのdisorderによる”フラストレーション”の効果によって引き起こされると考えられている。しかし一方で、Y2Mo2O7に代表される、化学的な乱れのない幾何学的フラストレート磁性体においても、スピングラス転移の存在が実験的に報告されており[1]、このquenched disorderなしでのスピングラス転移の起源は数十年に渡り未解決問題として残っていた。近年、Y2Mo2O7において、MoイオンのJahn-Teller歪みの存在が実験的に示唆されている[2]。我々は、この実験結果に基づき、格子歪みを動的自由度として捉えたスピン模型を考案した。MCシミュレーションの結果、この模型において、スピンと格子が同時に凍結することを見出した[3]。さらにはこの模型を無限大次元に拡張した平均場模型においても同時ガラス転移が起こる得ることがわかったので、これらについて議論する。

[1] M. J. P. Gingras et al. PRL (1997) [2] P. M. M. Thygesen et al. PRL (2017) [3] K. Mitsumoto, C. Hotta, H. Yoshino PRL (2020)